NDOT Research Report

Report No. 113-08-803

Impact of System Expansion on Maintenance Resources

September 2012

Nevada Department of Transportation 1263 South Stewart Street Carson City, NV 89712

Disclaimer

This work was sponsored by the Nevada Department of Transportation. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of Nevada at the time of publication. This report does not constitute a standard, specification, or regulation.

IMPACT OF SYSTEM EXPANSION ON MAINTENANCE RESOURCES

FINAL REPORT

Submitted to

Nevada Department of Transportation

Research Division Attn: Ken Chambers 1263 S. Stewart Street Carson City, NV 89712

Submitted by

Hualiang (Harry) Teng, Ph.D., Associate Professor

Department of Civil and Environmental Engineering

University of Nevada, Las Vegas

4505 Maryland Parkway, Box 454007

Las Vegas, NV 89154-4007

September 29, 2012

TABLE OF CONTENTS

Chapter 1 Introduction
Chapter 2 Literature Review
Chapter 3 Survey to State DOTs
Chapter 4 Methodology16
Chapter 5 Data Collection
Chapter 6 Maintenance Cost Model Development
Chapter 7 Conclusions and Future Study Needs
References
Appendices
Appendix 1 Review of NDOT Pavement Management System (PMS) Report
Appendix 2 Survey Form
Appendix 3 Survey Results
Appendix 4 Road Inventory Data in terms of Prioritization Category

TABLE OF FIGURES

Figure 1.1 Life Cycle of Roads in NDOT
Figure 4.1 Prioritization Category Life Cycles
Figure 5.1 Procedure for Data Collection
Figure 5.2 Road Inventory for Churchill County from PMS 2007 Data
Figure 5.3 Maintenance Prioritization Category from PMS 2007 Data
Figure 5.4 Road Mileage for All Nevada Counties According to Prioritization Categories
Figure 5.5 Time Space Diagram for I-80 of Category 1 from 0.00 to 27.71 (zoomed in)
Figure 5.6 Time Space Diagram for I-80 of Category 1 from 0.00 to 27.71 (zoomed out)
Figure 5.7 Time Space Diagram for US 50 (Category 3) in Churchill County
Figure 5.8 Procedure Using MMS Data for Macro of the Time-Space Diagrams
Figure 5.9 Procedure Using PMS Data of Macro of the Time-Space Diagrams
Figure 5.10 MS Excel Program Interface for the Time-Space Diagram Macro
Figure 5.11 Four Cases to Count Costs for a Route Segment
Figure 5.12 Identified Road Segments for Roads in Churchill County
Figure 5.13 Road Characteristics Data from NDOT PMS Data
Figure 5.14 Identified Road Segments for US 50 in Churchill County of Nevada
Figure 5.15 Traffic Flow Data from the NDOT PMS database, Copied and Pasted to a Different
Spreadsheet
Figure 5.17 Road Characteristics for a Chosen Road Segment from 1994 to 2002
Figure 5.18 Related Maintenance Cost Data filtered in the NDOT MMS Database
Figure 5.19 Maintenance Cost Data Converted for a Specific Road Segment
Figure 5.20 Maintenance Cost Data of Different Types of Cost Categories
Figure 5.21 Maintenance Costs and Road Characteristics Data in the Cost Data Master File 35
Figure 6.1.1 Life Cycle for Priority Category 1 Roads
Figure 6.1.2 Total Maintenance Costs for an Eight-Year Life Cycle for Category 1 Roads

Figure 6.2.1 Life Cycle for Priority Category 2 Roads
Figure 6.2.2 Total Maintenance Costs for a Ten-Year Life Cycle for Category 2 Roads
Figure 6.3.1 Life Cycle for Roads in Priority Category 3
Figure 6.3.2 Total Maintenance Costs for a 12-Year Life Cycle for Category 3 Roads
Figure 6.4.1 Life Cycle for Roads in Priority Category 4
Figure 6.4.2 Total Maintenance Costs for a 15 Year Life Cycle for Category 4 Roads
Figure 6.5.1 Life Cycles for Roads in Priority Category 5
Figure 6.5.2 Total Maintenance Costs for a 16 Year Life Cycle for Category 5 Roads
Figure 6.6.1 Comparison of Annual Maintenance Profile for Categories 1, 2, 3, 4, and 5
Figure A.1.1. Typical Performance Curve Generated from NDOT's Performance Models

TABLE OF TABLES

Table 2.1 Variables in a Regression Model to Estimate Total Annual Maintenance Cost	10
Table 4.1 NDOT Highway Maintenance Prioritization Categories	16
Table 6.1 Regression Models for Road Maintenance Priority Category 1	39
Table 6.2 Regression Models for Road Maintenance Priority Category 2	43
Table 6.3.1 Regression Models for the Roads in Priority Category 3	
Table 6.4 Linear Regression Models for the Roads in Category 4	59
Table 6.5 Linear Regression Models for the Roads in Category 5	73
Table A.1.1 Formulas and Determination of Category Status	
Table A.1.2 NDOT's Rehabilitation and Maintenance Assignment System	

CHAPTER 1

INTRODUCTION

Over the past decade or so, the population in Nevada has increased dramatically, especially within and near the urban areas. With this increase has come the need to expand the transportation system, particularly roadways. This expansion includes the construction of some new roadways; however, the greatest need is to improve nearly all existing major roadways. These improvements typically have included additional lanes, turning lanes, sound walls, shoulder widening, upgrading older cross-section standards, adding guardrails, and more landscaping. New and improved existing roadways have to be maintained, which adds to the demand on maintenance manpower, equipment, and materials.

In terms of evaluating transportation projects, maintenance and operating costs consist of the agency cost, user cost, and social cost. Obviously, the costs for maintenance resources (i.e., manpower, equipment, and materials) are part of the agency cost. Estimating the demand on maintenance resources is necessary when NDOT maintenance districts submit their requests to headquarters; the submissions then are integrated and a request sent to state legislators for approval. Currently, NDOT's Maintenance Division is responsible for the following maintenance activities:

- 1) Flexible Pavement
- 2) Rigid Pavement
- 3) Misc. Concrete
- 4) Roadside infrastructure
- 5) Roadside Cleanup
- 6) Roadside Facilities
- 7) Roadside Appurtenances
- 8) Traffic Services
- 9) Snow and Ice Control
- 10) Bridges
- 11) Stockpile Production

Ideally, the decision rests on the additional number of positions needed and the funding increase for equipment and materials for all these maintenance activities over the life cycles of the highway system expansions. The decision could fully or partially meet the estimated demand for maintenance resources over these life cycles.

The basic focus of this research project is developing a marginal maintenance cost mechanism for new construction projects. This mechanism will identify the total expected short-term and long-term maintenance burden required for each construction project. NDOT's short-term and long-term maintenance schedule has been specified as shown in Figure 1.1. There is one life

cycle segment for the roads in Category 1, and three segments for the roads in Category 2. Linear regression models were developed to estimate the annual maintenance costs broken down into man power, materials, equipment and stockpile for each of the segments in the life cycle in all the categories.

In this study, the following steps were followed: a literature review on estimating maintenance costs, a survey with state DOTs other than NDOT was conducted on the practice for estimating maintenance costs, data was collected, and linear regression models were developed for estimating annual maintenance costs.

This report consists of seven chapters. The first chapter provides an introduction on the background and objective of the study. In the second chapter, a literature review is presented. The third chapter describes the survey conducted with other state DOTs. The fourth chapter presents a methodology for developing linear regression models. Chapter 5 provides a detailed description of the data collection process. Chapter 6 describes the development of the linear regression models to estimate annual maintenance costs. Finally, Chapter 7 summarizes the development of the models and identifies the research needed in the future.

			TC F					Prio	ritiza	tion	Cate	gory	Life	Cycl	es						
Category 1	0		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
8 year		-	-					+				-		-							
life cycle																					
	1.5 0	mblo	1.2.5"	PBS wit	hOG				1.5° c	oldmill	2.5" F	BS wit	hOG				1.5° c	oldmill	2.5" F	BS wit	hOG
		0	at 1.St	riping a	nd rest	riping	done by	cont	ract. S	should	er seal	dane	by stat	e force	6.						
Cotosonu								-													
Category 2 10 year	-				-	1		-	-	1		-	1	1	1	1		1	-		
life cycle								-													
me ejere		Idmill	2" PB	S with O	G			1			2° col	dmill, 2	PBS	with O	G						2" coldmill, 2" PBS with OG
	TT	TT										1									
		0	at 2. S	triping a	nd rest	triping	done by	/ cont	tract	Should	ler sea	done	by stat	e force							
Category 3								-				-	_	_		1					
12 year					Flush				Chip's								Flush				Chip Seal
life cycle	2" PE	C unit	00		riusn	i		1	Unipa	seal			2108	S with (nc.		riusn	2641	1		Chip Sea
	-							-						5 wint v							
		0	at 3. F	lejuvine	ting se	aland	chip se	al by	state t	forces.	Wate	rborne	stripin	g, annu	ual res	tripe a	nd sho	ulder	seal by	/ state	forces.
Category 4																					
15 year														1							
life cycle					Flush	Seal		-	Chip S	Seal			Chip S	Seal		-		-	-		Flush Seal
-			CIR. 2*	PBS fouble (thin on	-1								-			S or Cl with O			hines	
	by st			iouble (mp se			-									te forc		ouble	inp se	701
	T			leiuvina	ting se	aland	chip se	al by	state t	forces.	Wate	rborne	stripin	a annu	uol res				seal by	/ stote	forces.
				T T																	
	5									1.13											
Category 5											10,50	200 222									
20 year							With the second	ds in	this ca	ategory	(See	rehabil	itation	guidline	es.)						
Category 5 20 year life cycle		0	at 5: 1	Mainten	ance w	ill mair	itain roa														
20 year life cycle							1							28	1						
20 year	• USU						1							22							

Figure 1.1 Life Cycle of Roads in NDOT.

CHAPTER 2

LITERATURE REVIEW

According to Anani (2008), maintenance costs are incurred for maintenance activities that are triggered when pavement conditions reach a critical condition; for example, pavement deteriorates as more vehicles run on it as well as other environmental factors. The marginal cost for maintenance can be defined as the increase in the total maintenance costs resulting from an additional unit of traffic loading. In Anani (2008), maintenance, rehabilitation and reconstruction (MR&R) costs models are classified into five approaches:

- 1) The pavement management system (PMS) direct approach,
- 2) The 'simple roughness' approach,
- 3) The econometric approach,
- 4) The cost allocation approach, and
- 5) The 'perpetual overlay' indirect approach.

Among these five approaches, the most relevant ones to this study are the PMS approach and the econometric approach. A PMS usually consists of a database that records the history of MR&R work on a roadway system and a pavement performance model that can produce the roadway surface condition, given the MR&R history, future maintenance policies, and traffic usage of a roadway segment. Optimization procedures usually are applied to search for the optimal MR&R schedule. As a product of the optimization procedure, maintenance costs also can be derived.

The econometric approach estimates a function that relates the total maintenance cost to influencing factors, such as traffic load, road geometry, pavement structure, and climate. It should be noted that there are only a few studies on estimating MR&R costs. However, the costs in these studies usually have mixed maintenance costs along with rehabilitation and reconstruction costs. The most relevant study is Gibby et al. (1990), in which a regression modeling approach was taken to study the impact of heavy trucks on maintenance cost. In their study, more than 1,100 mile sections of highway were randomly sampled. Data – including annual average daily traffic (AADT), maintenance costs, highway geometric information, and weather various different sources – were collected and integrated into a single database, which was used to develop a regression model. The annual maintenance costs were related to AADTs

9

of heavy trucks and passenger cars, age of pavement, presence or absence of a shoulder, temperature, location maintenance, existence of bridges, functional classification, and the district where a pavement section was located. The regression models were expressed as:

$$\begin{aligned} \text{TotalCost} &= & \beta_1 \left(\text{HT}_\text{AADT}\right)^{\beta_2} \left(\text{P\&L}_\text{AADT}\right)^{\beta_3} \left(\text{AGE}\right)^{\beta_4} \left(\text{AATEMP}\right)^{\beta_6} (\text{SHOULDER})^{\beta_5} \dots \\ & (e^{\text{NOSHOULDER'}})^{\beta_7} \left(e^{\text{MOUNTAIN'}}\right)^{\beta_8} \left(e^{\text{BRIDGE'}}\right)^{\beta_9} \left(e^{\text{MNCOLLCTR'}}\right)^{\beta_{10}} \dots \\ & (e^{\text{DISTRICT2'}})^{\beta_{11}} \left(e^{\text{DISTRICT11'}}\right)^{\beta_{12}} \end{aligned}$$

The variables in this model are presented in Table 2.1.

Variable	Description
TOTAL_COST	The dependent variable. Total pavement maintenance cost for one-
	mile section during the three fiscal years 1984-1987, in dollars
HT_AADT	AADT for "heavy" trucks, defined as trucks with at least 5 axles
P&L_AADT	AADT for passenger cars and "light" trucks
AGE	Pavement age, defined as the time since last major pavement work, in
	years
AA_TEMP	Average annual temperature, in °Fahrenheit
SHOULDER	Shoulder width, in feet
NO_SHOULDER'	Dummy variable (1=no shoulder; 0=shoulder)
MOUNTAIN'	Dummy variable (1=Mountain climate; 0=not Mountain climate)
BRIDGE'	Dummy variable (1=entirely bridge section; 0=at least part of the
	section not a bridge)
MN_COLLCTR'	Dummy variable (1=minor collector; 0=not minor collector)
DISTRICT2'	Dummy variable (1=Caltrans District 2; 0=not District 2)
DISTRICT11'	Dummy variable (1=Caltrans District 11; 0=not District 11)

Table 2.1 Variables in a Regression Model to Estimate Total Annual Maintenance Cost

It was found that the maintenance cost incurred by heavy trucks was much higher than for passenger cars, which presented a significant implication to such transportation policies as taxation.

Sebaaly et al. (2000) conducted a study for NDOT on estimating maintenance costs in late 1990s, for which a review is provided in Appendix 1. In this study, four techniques were used to estimate maintenance costs were discussed (Sebaaly et al., 2000; Hand, 1995). These are:

- 1. Correlating annual maintenance costs to Present Service Index (PSI) levels.
- 2. Correlating annual maintenance costs to the probability of their occurrence.
- 3. Establishing an overall annual maintenance cost for each treatment.

4. Establishing a fixed period cumulative annual maintenance cost for each treatment.

The first technique correlates annual maintenance costs to pavement performance, represented as the PSI level. This technique was proposed based on the understanding that the cost of maintenance varies with the nature of the maintenance activities that are triggered by the pavement conditions. Recognizing the fact that there is a time element in the pavement performance – i.e., not every maintenance activity occurs every year – makes the maintenance costs fluctuate significantly from year to year. In the second technique, the annual maintenance costs are correlated to the probability of the occurrence of maintenance activities. The third technique calculates the annual maintenance costs by considering the life of a pavement after a certain treatment. With this technique, the annual maintenance treatment. In the fourth technique, the annual maintenance costs take into consideration the time since the last treatment. In the study for NDOT (Sebaaly et al., 2000; Hands et al. 1995), the fourth technique was adopted.

Note that the four techniques are not regression models that can consider the different characteristics of pavement, such as traffic load and road functional classification, critical in determining the pavement conditions and maintenance costs.

CHAPTER 3

SURVEY

A survey form was designed and distributed to the maintenance division of 50 state DOTs. In total, 20 state DOTs returned the survey; the response rate was 40%, which can be viewed as satisfactory. The survey, which included 12 questions, is included below.

The objective of the survey was to collect the information on the cost estimation practices for maintenance work that was adopted in each state DOT. The survey starts with questions to clarify the maintenance tasks performed by each DOT. Then, questions were asked on the performance of the roads in order to understand the impact of road performance on costs. To determine the appropriate form of the modeling approach to estimate maintenance costs, questions were asked regarding the methods each DOT adopted to estimate maintenance cost. Overall, the results from the survey were helpful to NDOT in improving the development of maintenance cost practices.

The first and second questions of this survey were:

- (1) What are the road maintenance works performed by state force in your state DOT?
- (2) What are the road maintenance works performed by contractors in your state DOT?

The responses, which are included in the Appendix, show that the road maintenance works performed by each state's force and contractors were significantly different. Most of the state DOTs contracted out some maintenance tasks. However, Colorado Department of Transportation (CDOT) performs all maintenance of their roadways internally.

The third question is about preventive maintenance.

(3) Please list the preventive maintenances in your state DOT.

The responses indicate that the maintenance activities viewed as preventive are different among the states responded to the survey.

The fourth question inquires about the timing of the preventive maintenance.

(4) Are the timings of these preventive maintenances determined based on field inspections of roadways?

□ Yes □ No

Out of the 20 states that responded, 18 states replied that their preventive maintenance were scheduled based on the results from field inspection of roadways. One state indicated that some preventive maintenance work was assigned according to a fixed schedule.

The fifth question is about whether there are separate budgets for different infrastructures:

(5) Does your state DOT have separated budgets for major highway infrastructures like bridge, lighting, signing, pavement marking, sidewalk, etc.?

□ Yes □ No

If yes, please list these highway infrastructures?

In the responses, 14 states replied that they did have separate budgets for different infrastructures. The infrastructures for which they had separate budgets varied among these 14 states.

The sixth question asks about the method used to budget for new facilities:

- (6) Which method do you use to budget for new facilities like bridge, lighting, signing, pavement marking, sidewalk lighting, etc.?
 - □ Historic record □ Data from other agencies □ Others, specify

Eight states chose 'Historic record', nine chose 'Other', one chose both 'Historic record' and 'Others', one indicated 'Data from other agencies' and one chose both 'Historic record' and 'Data from other agencies'. It might be the case that different methods can be adopted for different tasks, even if a facility is not new to a state. For example, graffiti removal might be a new task for some states, while bridges that have graffiti are not new facilities.

The seventh question asks about the trend regarding maintenance costs:

- (7) Do you observe that maintenance costs for a roadway section increase with years after a reconstruction, a rehabilitation, or a preventive maintenance?
 - \Box Yes \Box No

Among the responses, 15 states answered 'yes', while the remaining states replied 'no'. The response to this question would help validate the maintenance cost data from NDOT. It is expected that the cost data would present such a trend.

The eighth question asks about maintenance cost functions:

- (8) Are there equations in your Pavement Management System that relate the costs of roadway maintenance (excluding reconstruction and rehabilitation) to the influencing factors such as ages, traffic loads, pavement conditions, weather, etc.?
 - 🗆 Yes 🛛 No

Six states indicated that they had maintenance cost functions, while the remaining states had no cost functions.

The ninth question inquires about maintenance cost functions for bridges:

- (9) Are there equations in your Bridge Management Systems (BMS) that relate the costs of bridge maintenance (excluding reconstruction and rehabilitation) to the influencing factors such as ages, traffic loads, etc.?
 - 🗆 Yes 🛛 No

The states that have maintenance cost function for roadways also answered 'yes' to this question.

The tenth question is about separating the cost data for bridges and road surfaces:

- (10) In your routine, corrective and/or preventive maintenance database, is it possible to separate the works for pavements and bridges?
 - □ Yes □ No

Most of the states show that they can separate the costs of these two major facilities. This is a very good practice that NDOT may want to adopt.

In the eleventh question, the type of maintenance cost is inquired:

- (11) Do you estimate maintenance costs in terms of man power, equipment, materials, separately?
 - 🗆 Yes 🛛 No

Among the 20 states that responded, 5 states indicated that they did not separate the costs for manpower, equipment, and materials.

The last question is about the annual fluctuation of maintenance costs:

- (12) How does your state DOT deal with the annual fluctuation of maintenance costs (routine, corrective and/or maintenance) because the maintenance activities on a roadway section each year are different?
 - Averaging the maintenance costs over the past three years
 - Estimate the probability of occurrence of maintenance activities
 - Develop advanced statistical regression models
 - Others, please specify ______

All these three methods have been adopted in some of these 20 states. About 10 states used other methods. These responses indicate that the fluctuation of annual maintenance costs is a concern, currently, among many state DOTs.

CHAPTER 4

METHODOLOGY

In this study, regression models were developed for different maintenance costs, different maintenance prioritization categories, and different life cycle stages. The maintenance costs are broken down into the costs for manpower, materials, equipment, and stockpile.

In NDOT, five maintenance prioritization categories are developed for various routes --Categories 1, 2, 3, 4, and 5 – each with different maintenance strategies over the life cycles. Table 4.1 lists the characteristics of these prioritization categories. It can be seen that the Category 5 routes has the largest percentage, 25%.

Category	ADT & Truck Traffic	% of System	Project Deterioration Rate (Years)
1	Controlled Access	19	8
2	ESAL > 540 or ADT>10,000	20	10
3	$540 \ge ESAL > 405$, or 1,600 < ADT \le 10,000, & NHS	21	12
4	$405 \ge ESAL > 270$, or $400 < ADT \le 1,600$	15	15
5	ADT ≤ 400	25	20

Table 4.1 NDOT Highway Maintenance Prioritization Categories

Figure 4.1 also displays the maintenance strategies for each prioritization category.

For the Category 1 routes, only one life cycle stage is considered: it starts from reconstruction with a 1.5" coldmill, 2.5" PBS with OG and ends at another such reconstruction. Similar to the Category 1 route, only one life cycle stage was considered for Category 2 routes, which starts from an end with a 2" coldmill and a 2.5" PBS with OG. There are three life cycle stages for Category 3: After reconstruction, After Flush Seal, and After Chip Seal. Four life cycle stages are assumed for Category 4: After Reconstruction, After Flush Seal, After First Chip Seal, and After the Second Chip Seal. In other words, there is one more Chip Seal treatment considered for

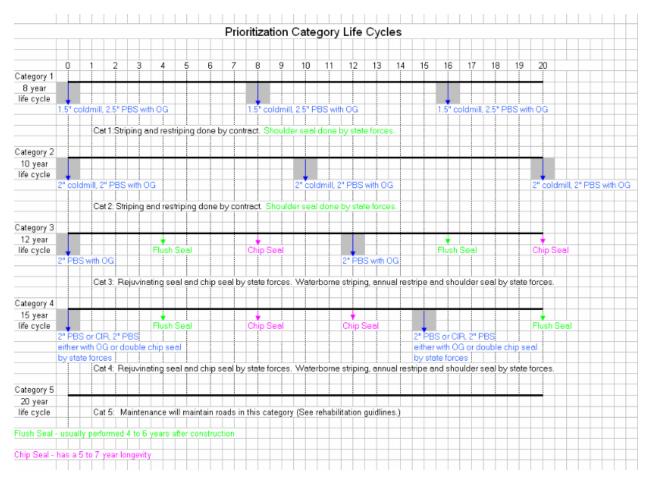


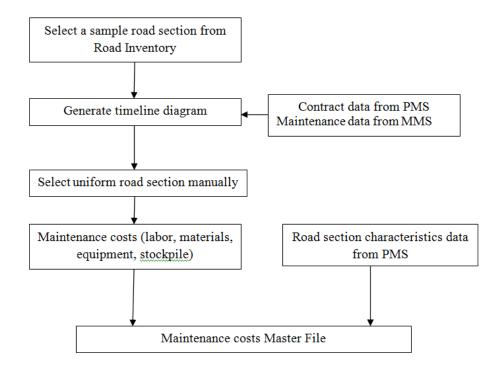
Figure 4.1 Prioritization Category Life Cycles.

Category 4 than for Category 3. There is no clear maintenance treatment patterns adopted for Category 5. In this study, three life cycle stages were considered: a beginning stage, a middle stage, and a last stage.

For Categories 3, 4, and 5, separate regression models were developed for the last year of a life cycle stage. For Categories 1 and 2, the last year was a reconstruction that was not performed by NDOT workforce. As for other categories, the maintenance activities in the last year of each life cycle stage include routine, corrective and the preventive maintenance, all of which have dramatically different ranges of costs. If these costs are put together in a lump sum, however, the estimation may not be accurate.

Linear regression models were developed for each life cycle stage of five different maintenance prioritization categories. The models can be written as:

 $Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \dots + \beta_k X_{ki} + \varepsilon_i, \quad \forall i$ where The relation between *Y* and *X* is linear. The *X*'s are deterministic. $E(\varepsilon_i)=0$, $Var(\varepsilon_i)=\varepsilon^2$, $\forall i$ $E(\varepsilon_i, \varepsilon_j)=0$, $\forall i \neq j$ $cov(X_i, \varepsilon_j)=0$ for all i and j ε_i is normally distributed, $\forall i$ No linear relationship exists between any subset of the X_i.


The dependent variables Y_i are the maintenance costs for manpower, materials, equipment, stockpile, and work hours. The independent variables are the factors that influence the costs, and include the age after the start of a life cycle stage, the pavement surface type, total traffic volume, truck flow volume, urban/rural area, and elevation.

CHAPTER 5

DATA COLLECTION

5.1 Data Collection Procedure

In this study, the ultimate goal of data collection was to extract maintenance cost data, road segment characteristics, and traffic flow data, based on which the correlations among them that can be modeled. The first step was to develop an inventory of roads maintained by NDOT that could be used as a population for sampling. Samples of road segments could be selected from this population of roads. In the second step, time-space diagrams were developed for the selected roads, in which the history of maintenance activities on each selected road could be presented. The third step was to utilize the time-space diagrams to identify the road sections that showed the same time series of maintenance treatments. It was assumed that each of these sections experienced the same maintenance treatments, between which the road characteristics were unchanged and the traffic loads were uniform over the entire road sections. The fourth step was to extract maintenance data. In the last step, the road characteristics data were collected for the identified homogenous sections. This sequence of steps is presented in Figure 5.1.

Figure 5.1 Procedure for Data Collection.

5.2 Road Inventory

In developing the inventory of roads maintained by NDOT, the roads in the five maintenance prioritization categories in each county of Nevada were identified based on the 2007 PMS data. Figure 5.2 shows the inventory of roads maintained by NDOT in 2007, broken down into the five categories. The inventories of roads in other counties of Nevada are listed in Appendix 4.

When this study was conducted, 2007 PMS data were the most updated available. In the PMS data, there is one field for maintenance prioritization, as shown in Figure 5.3; this field indicates the prioritization category to which a road segment belongs. This field can be used to extract the road inventory data in Figure 5.2. Note that one road could be divided into multiple sections, each with different maintenance prioritization. For example, SR 115 had two sections, as shown in Figure 5.3, one in Category 4 and the other in Category 5.

	A Cut -La Copy Format Painter Cloboard						t I Met	ge & Center -	5 - 1	• • I st d	Condition	al Format as 2 * Table *	Cell Styles *	Insert De	olete Korma	40	ar = 3	27 d	fă d.∼		
	816					0.00	1.200			1200									_		-
1	AB	c	D	E.	F	6	н	1	1	к	1.0	M	N	0	P.	Q	R	5	T.	U	Т
		Sectio	n 1	Sect	tion 2																
P	vioritizat Road			From	To																
Ľ	1 10080		27.71																		
		-		6																	
	2 1/5050		21.71																		
	US050A		9.10																		
+	U\$095	0.00	28.05																		
	- Conserve	0.00	2.00																		
	3 5R117 5R715	0.00	6.91 2.14	-																	
	SR715 SR720	0.00	3.02																		
	58723	0.00	0.36																		
	U\$050		11.23		1063	20															
	LI5095	28.06	59.04		A DOOR																
	Destruction		SHOW																		
	4 SR115	1.01	4.82																		
1	SR116	0.00																			
	5R119	0.00	4.14																		
	SR718	0.00	2.90																		
1	SR723	0.36	2.01																		
	SR726	0.00	1.87																		
5	A SR118	0.00	3.48																		
5			0.28																		
5	FRCHOZ	0.00	8.84																		
4	H Carson City	Churchill	Clark	Douglas	Eko	Esmeralda	Eureka	Humboldt	Lander	Lincoln	Lyon Min	rai Nye	Persta	g Store	y Wash	e Wh	te Pne	Total s	U		
idy																					

Figure 5.2 Road Inventory for Churchill County from PMS 2007 Data.

13	a ca	H	iar -	10 - 4	× .* =		- Wia	p Text	General		R	112	1	- 37	10 ×	4utoSum =	27 33	10	
Paste	-La Copy	Panter B	1	- 0-	A		-	on & Center -	5 - 5	1 24 13	Condition	al Format as	Cell Inse	nt Delete	And and a second second	North State	Sort & Find	6	
		(a)				Aligne					Formatting	p Table - 3	Styles *				Filter - Select	8	
_	113460	• (0	ta Ja		- 31	Arges	rume .		1 144	nger -	1	Styles		Dels		0.0	and .		
	B	C	D	E	F	G	н	T.	1.1	к	1	M	N	0	P.	0	R	S	T
						TO CO - D		POSTE .			PAVEM .								ADMINI -
	2007	2	CH	SR115	0.0			N		A	A	1	1		1 STP		8 58	SR	000115
282	2007	2	CH	SR115	0.1			N		A	A	1	1		1 STP		8.58	SR	000115
284	2007	2	CH	SR115	1.0	0 1.01 N		N		A	A	1	1	1	1 STP		8 58	SR	000115
006	2007	2	CH	SR115	1.0	1 2.00 N		N		A	A	1	1	1	t STP		7 4	SR	000115
	2007	2	CH	SR115	2.0	0 3.00 N	1	N		A	A	1	1		1 STP		7 4	SR	000115
	2007	2	CH	SR115	3.0	0 4.00 N		N		A	A	1	1		1 STP		7'4	SR	000115
	2007	2	CH	SR115	4.0	0 4.82 N		N		A	A	1	1		1 STP	1	7'4	SR	000115
447																		100	
1448																			
3449																			
3450																			
3451																			
3452																			
1453																			
\$454																			
1455 1456																			
1450 1457																			
458																			
3450																			
3460									1										
3461																			
3462																			
3463																			
1464																			
AUE				-						-		145	1			-		-	
4.9	H Shee	and the second particular	-										A				D (13 - 13) 20		0

Figure 5.3 Maintenance Prioritization Category from PMS 2007 Data.

The inventory of the roads for all the counties in Nevada is summarized in Figure 5.4. The percentages of these five categories of roads are ordered increasingly as 1, 4, 2, 3, and 5. These numbers are consistent with those of NDOT official statistics.

	Carson C	t Churchill	Clark	Douglas	Elko	Essences Ich	Eurela	Husebookit	Lander	Lincoln	Lyan	Mineral	Nyc	Pershing	Sharry	Washoe	WhitePine	0.	1
Prioritizati	i tatal	total	total	tatal	Intal	Iotal	total	total	total	total	total	total	total	total	total	total	total		
1	9.0	5 27.7	205.86	0	132.73	1	257	61.38	26.59	. 0	15.9	L I	6.86	5 75.0	9 (88.55	0	67585	0.12367
2	21	47.6	274.44	1232	81.77	98	0	38.44			2079	93.4	4 109.93	1	0 0	77.96	0	885.99	0.16289
3	16.8	139.78	147.58	26.09	117.63	6	58.71	50.51	8.9	103.07	102.86	5.2	4.7	1 N	10.6	76.48	242.22	128497	0.72636
4	29	5 24.B	5 61.78	1971	114.71		40.85	24.7	408	146.02	76.5	11.1	138.37	18	9 10	113.12	35.64	856.96	0.5707
5A	0000	3.4	35.67	. 0	101.77	18.8	20.24	89.2	n B	1.8	7.4	13	1 59.47	7.1	L (12	34.09	455.87	0.08255
58		5.7	16.58	. 0	88.74	84.58	015	72.64	14.6	87.14	0.5	56.0	141.07	2.5	2 0	1.5	2.04	651.11	0.11594
5C	10	76.3	77.7	0.94	86.55	38.4	1011	9.47	72.42	17.3	10.77	47	78.23	105.74	4 0	18.36	130.21	695	0.12738
											-							545575	

Figure 5.4 Road Mileage for All Nevada Counties According to Prioritization Categories.

5.3 Time-Space Diagram for Maintenance Work

Time-space diagrams present the maintenance tasks performed on a road. Figure 5.5 presents the time-space diagrams for I-80 from 0.00 - 27.17 in Churchill County; the diagram is zoomed into one road segment. Figure 5.6 shows the time-space diagram that covers the entire I-80 in Churchill County.

From Figure 5.5 it can be seen that the columns present the year's maintenances, rehabilitations, or reconstructions that were performed; the rows show the locations where these happened on a road. The yellow columns are those of rehabilitation and reconstruction projects that were recorded in the PMS database as multiple works performed in a year on the road. The purple columns are those of maintenance works performed under a flexible pavement program that consisted of the following tasks:

- Base & Surface Repair
- Hand Patching
- Machine Patching
- Maintenance Overlay, Inlay (Scheduled Betterment)
- Roadway Capital Improvements (Scheduled Betterment)
- Sand
- Fog/Flush
- Chip
- Scrub/Slurry
- Crack Filling
- Cold Milling

The other maintenance tasks, such as snow removal, are not presented in the diagram. From the colors of the columns, the road segments that experienced the same maintenance tasks can be distinguished. From these diagrams, the road segments that experienced homogenous maintenance can be identified, particularly preventive maintenance.

The time space diagrams for Prioritization Categories 3, 4 and 5 are presented with minor differences from those for Categories 1 and 2.

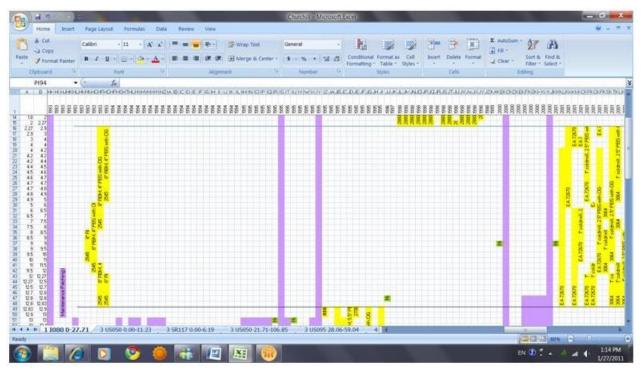


Figure 5.5 Time Space Diagram for I-80 of Category 1 from 0.00 to 27.71 (zoomed in).

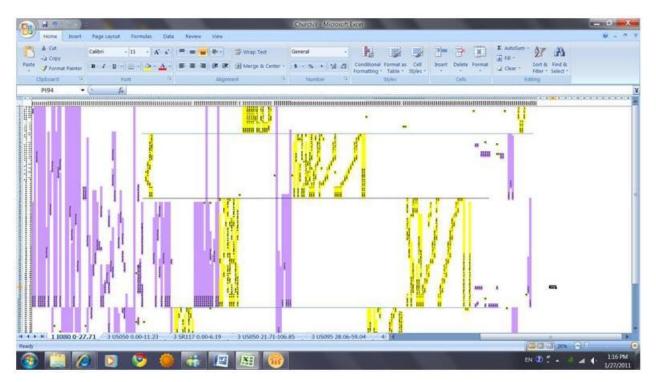


Figure 5.6 Time Space Diagram for I-80 of Category 1 from 0.00 to 27.71 (zoomed out).

In addition to the yellow and purple strips, orange strips were marked on the time space diagrams to distinguish the preventive maintenance tasks, see Figure 5.7: Fog/Flush, Chip, and Sand Seals.

Figure 5.7 Time Space Diagram for US 50 (Category 3) in Churchill County.

Time space diagrams were developed based on running an MS Excel program written using Macro. The data from the PMS and MMS databases were utilized as the base of the program. The contracting works on rehabilitation and reconstruction, represented as yellow strips, are included in the PMS database. The maintenance works, depicted as purple and orange strips, are from the MMS database. The procedures adopted in coding the Macro program are presented in Figures 5.8 and 5.9.

Data file MMS:

Loop through each segment

 find the year
 find mileage points
 if the current task is different from previous task, or the corresponding cells are colored already, insert a year column
 mut task in the corresponding slots (change corresponding cell color and text in

d. put task in the corresponding slots (change corresponding cell color and text in excel)

2. merge any contiguous cells with same color and same text, turn text up.

Figure 5.8 Procedure Using MMS Data for Macro of the Time-Space Diagrams.

Data file AllData:

1. Loop through each sement

- a. Find the year
- b. Find mileage points

c. If the current "Contract Repair Strat" is different from previous one in this year column, or the corresponding cells are colored already, insert a year column

- d. Put "Contract" and "Contract Repair Strat" in the cells and color
- 2. merge any contiguous cells with same color and same text, turn text up.

Figure 5.9 Procedure Using PMS Data of Macro of the Time-Space Diagrams.

Figure 5.10 presents the interface of the MS Excel program. The PMS and MMS data are stored in the spread sheets named 'Alldata' and 'MMS'. For an identified road, such information as the county, the road name, and the beginning and ending mile posts needs to specified using the filtering function in MS Excel. The 'FROM' should be entered as ' \leq ' the ending milepost, while the 'TO' should be input as ' \geq ' the beginning milepost for a road segment. In this way, all the maintenance works related to the road segment concerned can be included.

A Cut - a Copy	Call ter B	ei - 11 2 U	• A A		and the second second	Wap Text Nerge & Center -	Number 5 - % + %	Conditional Format as	Cell Inse	an and a start	∑ Auto		27 A		
Claboard	6	Fort	14		Abgroment	100000000000000000000000000000000000000	Matricer	Formatting = Table =	Styles * *	Delta	-		Fiber * Select *		
Cardina and Andrews			142		D. WHITELE										
Security Warning	Macros h	we been disable	d. Options												
E1779	+ (a	<i>f.</i> 8													
A	B	C	D	E	F	G H	1	1	K.	L	M	N	0	p.	Q
COLLECTION -	DISTRI	C . COUNT	ROUTE -	FROM J 1	TO COL T DIR	ECT . POSTER	+ LAST P. + CO	NTRACT AWARD DATE	CONTR -	REPAIR STR	AT				-
2007	3	WP	SR894	0	1 N	N	Maintenar	04/11/2006 00:00:0	0 Chip seal	100001000007000			Generate Fron	nTo	
2007	3	WP	SR894	1	2 N	N	Maintenar	04/11/2006 00:00:0	0 Chip seal				Index		
2007	3	WP	SR894	2	3 N	N	Maintenar	04/11/2006 00:00:0	0 Chip seal			-			
2007	3	WP	SR894	3	4 N	N	Maintenar	04/11/2006 00:00:0	0 Chip seal				Generate Gra	ph	
2007	3	WP	5R894	4	5 N	N	Maintenar	04/11/2006 00:00:0	0 Chip seal						
2007	3	WP	SR894	5	6 N	N	Maintenar	04/11/2006 00:00:0	0 Chip seal				Reset Worki	8	
2007	3	WP	SR894	6	7 N	N	Maintenar	04/11/2006 00:00:0	O Chip seal				Platform		
2007	3	WP	\$R894	7	8 N	N	Maintenar	04/11/2006 00:00:0	0 Chip seal						
2007	3	WP	SR894	8	9 N	N.	Maintenar	04/11/2006 00:00:0	0 Chip seal						
2007	3	WP	SR894	9	10 N	N	Maintenar	04/11/2006 00:00:0	0 Chip seal						
2007	3	WP	SR894	10	11 N	N	Maintenar	04/11/2006 00:00:0	0 Chip seal						
2007	3	WP	SR894	11	12 N	N	Maintenar	04/11/2006 00:00:0	0 Chip seal						
2007	3	WP	SR894	12	13 N	N	Maintenar	04/11/2006 00:00:0	0 Chip seal						
2007	3	WP	SR894	13	14 N	N	Maintenar	04/11/2006-00:00:0	0 Chip seal						
2007	3	WP	SR894	14	15 N	N	Maintenar	04/11/2006 00:00:0	O Chip seal						
2007	3	WP	SR894	15	16 N	N	Maintenar	04/11/2006 00:00:0	0 Chip seal						
2007	3	WP	SR894	16	17 N	N	Maintenar	04/11/2006 00:00:0	0 Chip seal						
2007	3	WP	SR894	17	16 S	N	Maintenar	04/11/2006 00:00:0	0 Chip seal						
2007	3	WP	SR894	16	15 S	N	Maintenar	04/11/2006 00:00:0	0 Chip seal						
2007	3	WP	SR894	15	14 5	N	Maintenar	04/11/2006 00:00:0	0 Chip seal						
2007	3	WP	\$R894	14	13 5	N	Maintenar	04/11/2006 00:00:0	0 Chip seal						
AllData	MMS	WorkingPlatfo	m Sheet2	Sheet3	Template	U5095A LY 0-60	0.65 program re	cords D H						-	

Figure 5.10 MS Excel Program Interface for the Time-Space Diagram Macro.

Figure 5.11 shows the relationship between a road segment and its associated maintenance works. It can be seen that there are four possible maintenance works that were performed: (1) within the segment, (2) through the segment, (3) overlay the segment on the left, and (4) overlay the segment on the right.

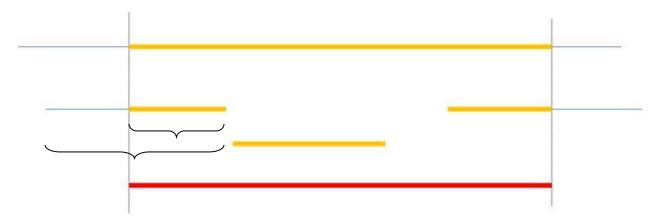


Figure 5.11 Four Cases (Marked as Yellow) to Count Costs for a Route Segment (Marked as Red).

With these inputs, which make the relevant data active in the program, the following steps are carried out.

- The first step is to reset a working spreadsheet by clicking on the 'Reset Working Platform' button.
- 2) Then, click on the 'Generate From To Index' button to generate the frame of the timespace diagram, i.e., years vs. locations.
- The last step is to generate the time-space diagram by clicking on the 'Generate Graph' button.

Depending on the amount of rehabilitation, construction, and maintenance works performed on a road segment, the program could last as short as a few minutes or as long as a few hours to complete.

5.4 Selecting Homogenous Road Segments

With the time-space diagrams developed for selected road sections, road segments that show homogenous maintenance treatments in history were identified. The horizontal lines in Figure 5.5 were drawn to delineate such a homogenous segment starting from 2.27 to 12.83. Figure 5.6 present multiple such segments identified from the diagram.

The identification of the homogenous road segments used the maintenance policy as shown in Figure 4.1. For a homogeneous segment in Categories 1 or 2, there should be no rehabilitation performed on any division in it during the time duration between these two rehabilitations. As far as a homogeneous segment in other categories, there should be no preventive maintenance or rehabilitation performed within the segment during the time period between rehabilitation and any preventive maintenance.

As shown in Figure 5.12, four segments were identified for I-80 from 0.00 to 27.71 in Churchill County: 0.00-2.27, 2.27-12.83, 12.83-22.46, and 22.46-27.27, each with a time period starting and ending with a rehabilitation. Similarly, two segments were identified for SR 317 from 0.00 to 6.91 in Churchill County: 0.00 - 42 4.22 - 6.91.

27

3	Home B	nert	Page Layou	a. Formula	t: Data	Review View													¥ -
1114	а си а сору	•	talibri		x x =		E	ep Text rge & Center -	General	-	R.	nal Formut as	Cel	Br B	Format.	Σ AutoSum já rili -	Sort & Find &		
- C	J Format Pa											ng = Table =	Styles *			42 Char *	Fiber = Select	8	
- 0	apowa	•		Font	- (*) (*)	A1	gemant	4	happend	e - 9		styles		Del		-	dang		
-	A6	*(Je .	-		-		_			-	-	1	-		1 1 1	-	_
-	A	В	C	D	E	F	6	H	1	1	K	L	M	N	0	P	Q	R	5
	1		19080	0.0	0 27,71	0	2.27		30.05	1998		1.5" Coldn							
-	_							1999	2005	2006		1.5° coldre	uii, 27 P	ss with OG					
-	_									1993		8" RBM, 4"	DES uni	0.05					
						2.27	12.83	1994	2000	2001		1" coldmill							
						RIEF	46.03	****	2000	2003		A CONDITIN	a and the	o with oo					
										1995		8" RBM, 5	5" PBS	with OG					
						12.83	22.46	1996	2002	2003		1" Coldmil							
													17.5.22						
						22.46	27.7			1994		8" RBM, 5"	PBS wi	th OG					
								1995	2003	2002		1* coldmill	, 2" PBS	with OG					
			-																
	3 Chi	archill	5R117	0.0	0 6.91	4.22	6.91	-	-	1991		Chip	-						
								1992	1999	2000		2" PBS with	n OG						
						0	4.2			1999		Chip							
						0	9.2	2000	2004	2005		and the second sec	-10 Bir	es with OG					
								2000	2004	2000		4.175 COID		100 milli (202					
	3 Chr	archill	125050	0.0	0 11-23	2.8	9.9			1992		Chip							
					1		-	1993	1995	1996		8" RBM, 4	PBS w	th OG					
								10100	14.202			and the second s							
	M Carson	CRY .	Churchill	Clerk D	ouglas Ek	Cat 4 Summ	nery Esm	veraida Eur	eka Humb	oldt Land	fer Un	coin 4	_		-		-	-	The second
y iii											-						CE (E) 100	• (-)	0
5	ALC: NO	6		6	-	and the	1	1 188	1.000								0	A LOOP A	\$154

Figure 5.12 Identified Road Segments for Roads in Churchill County.

5.5 Deriving Traffic Flow and Road Characteristics Data

5.5.1 Traffic flow data

The mile-by-mile traffic flow data available in the PMS database vary over a given road segment. Thus, averaging has to be performed for the mile-by-mile traffic flow data. The procedure to derive the average ADT data starts by copying and pasting the road characteristics data to a separate worksheet. The average of the ADT is first calculated for one year. The spreadsheet formula is then copied and pasted to other years. The averages of ADTs of these years are put together, then copied and pasted to the cost data file.

Figure 5.13 shows the filtered data for the road segment East US 50 from 43.71 to 59.96 in Churchill. This segment was identified for US 50 in Churchill County from 21.71 to 106.85, which is presented in Figure 5.14. It should be noted that when filtering the data, the criterion for the 'FROM' column should be "less than or equal to 43.71" and the 'TO' column should be "less than or equal to 59.96". Figure 5.15 shows that the traffic flow data is moved to a separate spreadsheet, in which their averages are derived and clustered together before moving to the master file for cost data.

file	laper	Inert	Page Leyou	Formulas	Data A	leview yie							_		-	-	_	-		0 - 0
2	TA TO	A 11		0	Connectio	24 2		V. Clear	3	8-0		1	22	191 1	a 1		now Detail			
-	from fro	m from C	mer Det		I Propertie	11 5	10 A	Se Reappi	Y Test to			Consolidate	White if	Group Lity			ide Detail			
0158	Web Te				- Fattanta			Sy Advanc			Validation -		Analysis -	-	-	0000				
	Get	External Da	19		Connections		Sort & F	dar			Data Tools				Outlin	e	16			
- 39	473142		fa	135227																
										_			_							_
-	A	в	C	D	E	F	G	н	1	1	K	L		M	N	0	p	Q	R	S
			T DISTRI		ROUTE 7				POSTE	BEGIN		I - INUME	E	NCT - PR	ORI - I	MIDPO: ·	WEATE	URBAN		
42	135,227		1	CH	US050 US050	51		E E			0 A		-						700 485	97
15	135,232		5	CH	US050	56		E			0 A 0 A								485	9
10	135,220		10	CH	US050	44		E E			0 A		2						700	9
20	135,221		5	CH	US050	57		E			A		1						485	7
21	135,234		5	CH	US050	58		E			0 A		-						485	7
22	135.224		5	CH	US050	48		E			0 A		-						700	9
23	135,225		3	CH	US050	49		Ē			0 A		1						700	9
73	135,220		3	CH	US050	50		E			0 A		1						700	9
31	135.222		5	CH	US050	46		E			0 A		1						700	9
124	135,223		2	CH	US050	47	48	E			0 A		1						700	9
25	135,228	1994	2	CH	US050	52	53	E			0 A		1						485	7
126	135,229	1994	2	CH	US050	53	54	E			0 A		1						485	7
27	135,230	1994	2	CH	US050	54	55	E			0 A		1						485	7
28	135,231	1994	2	CH	US050	55	56	E			0 A		1						485	7
129	123,992		2	CH	U\$050	56	57	E		1	0 A		1		-				460	6
30	123,993	1995	2	CH	US050	57	54	3.E			0 A		1						460	0
61	123,994		2	CH	U\$050	58	55	E			0 A		1						460	6
62	123,989		2	CH	US050	53	54	E			0 A		1						675	10
183	123,990		2	CH	US050	54	55	E			0 A								675	10
64	123,991		2	CH	US050	55		E			0 A		1						460	6
65	123,988		2	CH	US050	52	53	E			0 A		1						675	10
66	123,980	1995	2	CH	U\$050	44		5 E			0 A		1						675	8
1.	# Sheet	1 10	1	1943	Honen			575			0.0	5141	1						1.35	
	141 of 23853	want seat in the	found									19144	Am	inge: 15,430	Court 1	95 Sum	2.040.199		(e) #0	0
The second division in which the second division is not the second division of the second division is not the second division of the seco	10000	1.	and the second second	1000		- 100 m	1000	1.18	-	-	-							1000		9:09 PN

Figure 5.13 Road Characteristics Data from NDOT PMS Data.

3	Churchill	US050	21.71	106.85	43.71	59.96			1993	chi	ip						
							1994	1998	1999	1.5	5" coldn	nill, 2.5" PB	S with OG	19	94	3	7
														19	95	3	7
														19	96	3	7
														19	97	3	7
														19	98	3	7
														19	99	3	7
							2000	2001	2002	fog	g/flush			20	00	1	10
														20	01	1	10
														20	02	1	10

Figure 5.14 Identified Road Segments for US 50 in Churchill County of Nevada.

om ces	From Fro Web Te	am Feo	n Other urces *	Exit	ting sctions	Refresh All +	Data Connect df Properti Edit Link Innections	ions 21	View 214 Sort	Filter Sort & Filte	% Clear 15 Reapply 1 5 Advanced ar	Text to 1	ternove D uplicates Valid		onsolidate Wha	d Group	Vingroup Su Outli	=3 Hed	w Detail c Detail			0 -
	A1		(°	1	135	227																
	A	в		C	D		E	F.	6	R	5	T	U	v	W	х	Y	Z	AA	AB	AC	AD
	135,227 1		2		СН		5050		1 #	700	91	13	101									
	135,232 1		2		CH		5050		6 #	485	73	15	81									
	135,220 1		2		CH		5050		4 #	700	91	13	83									
	135,221 1		2		CH		5050 5050		5#	700 485	91 73	13	83 81									
	135,233 1		5		СН		5050		8 #	485	73	15 15	81									
	135,234 1		-		СН		5050		8 #	485	91	13	101									
	135,225 1		5		СН		5050		9 #	700	91	13	101									
	135,226 1		5		CH		6050		0 #	700	91	13	101									
	135,222 1		5		CH		5050		6 #	700	91	13	101									
	135,223 1		2		CH		5050		7 #	700	91	13	101									
	135,228 1		2		CH		5050	5	2 #	485	73	15	81									
	135,229 1	994	2		CH	U	5050	5	3 #	485	73	15	81									
	135,230 1	994	2		CH	U	5050	5	4 #	485	73	15	81									
	135,231 1	994	2		CH	U	5050	5	5 #	485	73	15	81		[*] 600	83	14	89	#DIV/01			
	123,992 1		2		CH	U	5050	5	6 #	460	69	15	77		617.6667	85:53333	13.93333	93	#DIV/0!			
	123,993 1		2		CH	U	5050	5	7 #	460	69	15	77	-	586	84.33333	14.46667	98.46667	#DIV/01			
	123,994 1		2		CH		5050		8 #	460	69	15	77					91.66667	#DIV/01			
	123,989 1		2		CH		5050		3 #	675	101	15	113	2	655	81.2	12.6		#DIV/0!	-		
	123,990 1		2		CH		5050		4 #	675	101	15	113		605	60.8	10		1.218	1		
	123,991 1		2		CH		5050		5 #	460	69	15	77	_		59.58824			1.218			
	123,988 1		2		CH	U	5050	5	2 #	675	101	15	113	-		59.41176	11.05882	73	1.218	8		
	F K Sheet	1	eet2	Sheet	3 🖓	<u></u>									14				-			19570
ý																		Cos	et; 230 📖	다.비 10	98 (H)	0

Figure 5.15 Traffic Flow Data from the NDOT PMS database, Copied and Pasted to a Different Spreadsheet.

5.5.2 Midpoint Elevation Data

When the length of road segment is long, the midpoint elevations of the mile-by-mile midpoint elevations on the road segment may be different; thus, the average of these mile-by-mile midpoint evaluation data needs to be derived. Usually, the most recent years of the road characteristics data also have the complete mile-by-mile midpoint elevation data. These data can be copied and pasted to a separate spreadsheet.

In this study, a template was developed. These mile-by-mile data can be inserted into the template, and the average of the mile-by-mile midpoint elevation can be read from the template right away. Figure 5.16 displays such a template as well as the average midpoint elevation.

File	Home		Page	Layout	Formula	as D	Data	Review	View			Av	erage	- Microso	oft Excel										~ 0 -	
From Access	Web T	rom From C fext Source et External Da	es * (Existing Connectio		sh	Connect Propert Edit Link	ies	24 ZZ	t Fi	K Clea K Clea Reas Adva & Filter	oply Te	ext to lumns	Remove Duplicates	Data Validation Data To	*	e What-If Analysis		ip Ungroup		♥∃ Show D ■∃ Hide De					
	P21	• (*		fx									_													
4	F	G	н		I	J		K		L	M	N		0	P	Q	F		S	Т	U		V	W	X	1
1 FI	ROM_CCT	TO_COUN	DIRE	CTIO PC	DSTED_	BEGI	N_MF	PAVE	MEN NU	MBER	FUNCTIO	PRIOR	ITIZ N	IDPOINT	WEATH	HEF URBAN	IN ONE	DIR_	ONE_DIR	ONE_D	IR_ONE_	DIR_	KIPS_PE	F COUNT_	S ROAD_V	VIR
0		1993												4,250												
.1		1994												4,250												
2		1995												4,250												
3		1996												4,750												
4		1997												4,750												
.5		1998												4,250	-											
.6		1999 2000												4,250	-											
.7		2000												4,250	-											
.8		2001												4,250	-											
0		2002																								
1		2003												2												
2		2004												1												
3		2005																								
4																										
5																										
6																										
27																										
28																										
9											0 #DIV/0!	#DIV/	d! 1	4,309	#D V/	0! #DIV/	01	41	5		13	3	(#DIV/0!	#DIV/0!	1
0														- 500												
	M Shee	t1 Sheet	t2 / S	heet3 /	2											1.						ш				Þ
eady																			-			1		100% 😑	Ū	
-					Ö	Ø	5	ił.														EP	N 😨 🖞 -	- 🚿 all	() 9:58 1/14/	

Figure 5.16 Template for Calculating the Average of Midpoint Elevation.

5.5.3 Data for Other Road Characteristics

Other road characteristics data – such as number of lanes, the type of road surface, and whether the road is urban or rural – do not vary over the length of a road segment. These data are collected as follows. A shorter road section of one mile long within the road segment can be chosen. As a result, only one record of the road characteristics for the road segment is displayed in MS Excel. These one-year records are shown together, which makes it convenient to be moved to the cost data master file. Figure 5.17 presents the road characteristics over a given time period.

		£						PMS_Raw	v_Data_All -	pavement	- Microsoft I	Excel						1000	n Earr
file	Home	assert \$	age Layout	Formulas	Data Rev	iew View												۵	0 = 0
A	1				Connections	21 211		Clear	-	8-1	-	P 22	1	*	1 当 5hg 当 465	e Detal			
	rom Fron				Edit Links	1 Sort	Silter	 Reapply Advanced 	Text to			solidate What		Ungroup Su		CONC.			
oess /	Web Text Get E	t Sources - Internal Data	Connecti		onnections		Sort & Filter		Coumns t	Suplicates Va	Data Tools	Analys		Out	ine	6			
G2	38534		fu.																
			C	D		F	G				10	1			0	р			S
1 1	A ROWNI -	B COLLE		- COUNT	E ROUTE 7			H	POSTE -	BEGIN	- PAVEM -	NIMBE -	H	- PRIORI -	· MIDPO -		Q - LIRBAN -	R ONE D -	
721	135,234		2	CH	US050	58	59 E		1.0010		0 A	1	A.M. MARKAN	a substa	(Interior)	and and		485	
161	123,994		2	CH	US050	58	59 E				0 A 0	1						460	1
189	112,798		2	CH	US050	58	59 E				0 A 0	1						475	
101	101,264		2	CH	US050	58	59 E				0 A 0	1						525	
873	89,776		2	CH	US050	58	59 E				0 A 0	1		2		1		550	
874	78,141		2	CH	US050	58	59 E		E		0 A 0	1		2 3	4,250			500	
020	65,681		2	CH	US050	58	59 E		E		0 A 0	1		2 3	4,250			425	
022	65,682		2	CH	U\$050	59	60 E		E		0 A	1		23	4,250			425	
123	52,818 52,819		2	CH	US050	58	59 E		E		0 A			23	4,250			425	
124	40.019		2	CH	US050	59	60 E		E		0 A 0			23	4,250			425	
449	40,019		5	CH	US050 US050	58	59 E		E		0 A 0 A			23	4,250			405	
528	40,020	2002	2	Ch	05050	29	00 0		C.		0 A			23	9,230			400	e
529																			
530																			
531																			
532																			
1533						1													
3534																			
3535						1													
1536																			
3537																			
3538																			
	Sheet	1 13										14							
dy H	iter Mode																日田 100	• O	0
-	Contraction of the local division of the loc	1 1 1 1 1	Contract of Contract of Contract	COLUMN TWO IS NOT	No. of Concession, Name								_				and the second se		10:14 PM

Figure 5.17 Road Characteristics for a Chosen Road Segment from 1994 to 2002.

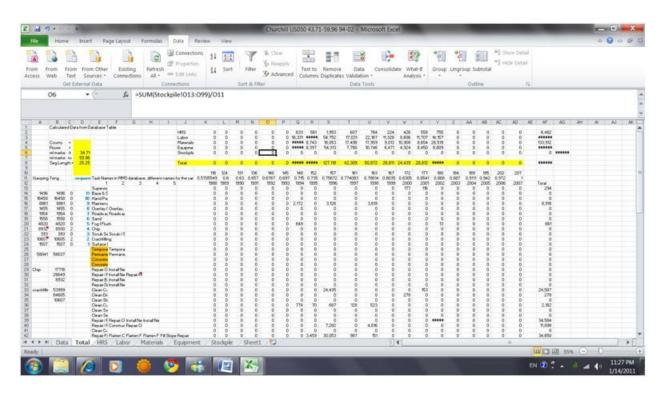
It was found in the data collection that road segment characteristics may not be uniform within a segment and over a time period. Sometimes, traffic flows are kept constant over any point of a road segment for which no average is needed. It also happens that the midpoint elevations are the same mile-by-mile within the road segment, for which no average is needed to derive the evaluation for a chosen road segment. This case highly likely happen for road segments having shorter distances and/or in rural areas. Care should be taken that the number of sections within a road segment varies over the years. The range of time period for averaging a road segment characteristic in the spreadsheet has been adjusted accordingly.

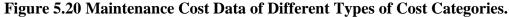
5.6 Maintenance Cost Data

Maintenance cost data were extracted from the NDOT MMS database. To facilitate the data extraction, a MS Spreadsheet program was developed. Given a chosen road segment with specific beginning and ending mileposts and time period, the corresponding maintenance cost data can been pooled together, and copied and pasted to a template in the MS Excel program. The data that are moved are used as a base to derive the cost data for manpower, equipment, materials, and stockpile.

Figure 5.18 shows the filtered maintenance data for US 50 from 43.71 to 59.96 in Churchill. These cost data are for maintenance activities relevant to a specific road segment.

39						M	MS 20 years	1988-2007	Microsoft E	Excel	-						-	all server
He Home	Issert Page Layout			Review View	-					-	International Contraction	200 200	12.01 24	Show Detail			- 0	0.0
à 12 13			Conne	24 01		K Clear		8-8	-0		12	B *8	40.01	vide Dytai				
	From Other Existi	ng Refre	ish Prope	41 50	n Filter	S Reap	Taut N			onsolidate		oup Ungroup		LACK DADY				
ess Web Text	Sources - Connec ernal Data	tions All	 Formedians 		Sort & Fil	3 xara	ced Column	s Duplicates	Validation * Data Tools		knalysis *	t 12.	Jutline	6				
T744123		21.24	Connections		-36/1-6 /1	Ler.			Data 10005				ALASHINE .	(a.				_
1144153	JA JA	62.64																
A h	B	с	D	E	F	G	н		3	K	L .	M	N	0	р	Q	R	
DIVISIO - I	DATE I	ROAD T	COUNT J	MP FRC # M	PTO J D	ISTAN -	TASK .	ACCOM -	CAUSE .	BETTER	LABOR -	LABOR -	MATER -	EQUIPA -	STOCKP -	TOTAL (NET CO) - C
57 C280	1/5/1994	US 050	CH	20.64	60.52	39.88	Repair / In	55	Normal M		16	\$316.16	\$2.20		\$0	\$318.36	\$	
194 C280	1/6/1994	US 050	CH	20.64	60.52	39.88	Remove D	80	Normal M		6	\$118.56	\$0	\$0	\$0	\$118.56	\$	
897 C280	1/6/1994	US 050	CH	46.4	46.4	0	Repair / Re	5	Normal M	-	6	5 \$118.56	\$63.69		\$0	\$209.31	\$	
511 C280	1/18/1994	US 050	CH	43	52.54	9.54	Repair / Re	10	Normal M		8	\$158.08	\$0		\$0	\$158.08	\$	
28 C280	1/19/1994	US 050	CH	49	49	0	Remove D	60	Normal M		6	\$ \$118.56	\$0	\$93.84	\$0	\$212.40	\$	
17 C280	1/24/1994	US 050	CH	20.64	60.52	39.88	Patrolling,	80	Normal M	17.	8	\$158.08	\$0		\$0	\$194.16	s	
25 C280	1/25/1994		CH	20.64	60.52	39.88	Maintain M		Normal M		8		\$0		50	\$230.24		
926 C280	1/25/1994	US 050	CH	20,64	60.52	39.88	Snow & Ice	4	Normal M	1	4	\$79.04	\$100		\$0	\$246.84	\$	
15 C280	2/7/1994		CH	20.64	60.52		Snow & Ici		Normal M		. 4		\$0		\$0	\$187.15	1070	
70 C280	2/8/1994		CH	20.64	60.52		Snow & Ici		Normal M		16		\$300		50	\$924,28		
199 C280	2/10/1994		CH	20.64	60.52		Maintain M		Normal M		10	100 C C C C C C C C C C C C C C C C C C	\$91.26		\$0	\$288.86	0.72	
400 C280	2/10/1994		CH	20.64	60.52		Snow & Ici		Normal M		3	\$89.51	\$200		\$0	\$349.59	127	
21 C280	2/11/1994		CH	20.64	60.52		Snow & Ici		Normal M		12		\$350		\$0	\$827.44		
142 C280	2/17/1994		CH	20.64	60.52		Patrolling,		Normal M		4		\$0		50	\$115.12		
143 C280	2/17/1994		СН	20.64	60.52		Snow & Ici		Normal M		4	\$79.04	\$0		50	\$146.84		
L55 C280	2/18/1994		CH	20.64	60.52		Remove D		Normal M		4	\$79.04	50		50	\$115.12		
156 C280	2/18/1994		CH	20.64	60.52		Snow & Ice		Normal M		8		50		\$0	\$293.68	30	
159 C280	2/18/1994		CH	47	47		Repair / Re	1	Normal M		8		\$90.94		\$0	\$285.10		
031 C280	2/22/1994		CH	20.64	60.52		Maintain N	170	Normal M		16		\$101.40		\$0	\$417.56	127	
059 C280	3/7/1994		CH	20.64	60.52		Maintain M		Normal M		8	\$158.08	\$50.70		\$0	\$244.86	707	
322 C280	3/22/1994	US 050	СН	20.64	60.52	39.88	Remove D	80	Normal M			\$79.04	\$0	\$52	50	\$131.04	5	
	s 1988-2007 👘	-	_					_		14					-	-		•
ly Filter Mode		-	-		-	-				Avera	ge: \$2,799.85	Count: 1720	0 Sun(\$32	066,670.31	言口告	100% 💮	0	
	10 13	0		A DE LA DE L	X										N 🔞 🖞 🔺		40 11	:25 P


Figure 5.18 Related Maintenance Cost Data filtered in the NDOT MMS Database.


For those activities whose ranges do not completely fall in the range of the road segment, the proportion of the maintenance activities that occurred on the road segment was considered, and is shown in Figure 5.19.

X W					Churchill US05	0 43.71-59.9	6 94-02 - M	icrosoft Exc	el							
File Home In	nsert Page Layout	Formulas Data Review	v View												۵ 🕜) - @
	From Other Sources * Connect rnal Data	ions All - 📟 Edit Links	⊉↓ <u>⊉∏</u> ⊼↓ Sort	T 3		ext to Remo	ove Data ates Validatio Data T	n *	te What-If Analysis *		roup Subtota Outline					
POUZ	Jx Jx															
4	R	S	T	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG
NET COSTS		PRODUCTIVITY	UNIT COST	rs	Protion	ABOR HR	LABOR CO	MATERIAL	EQUIPMEN	STOCKPILE	TOTAL CO	Year				
\$		3.44	\$5.79		0.633149	10.13039	200.1765	1.392929	0	0	201.5695	1994				
3 5		13.33	\$1.48		0.633149		75.0662	0	0		75.0662	1994				
\$		0.83	\$41.86	_	1	6	118.56	63.69	27.06	0	209.31	1994				
\$		1.25	\$15.81	_	1	8		0		0	158.08	1994				
\$		10	\$3.54		1	6		0		0	212.4	1994				
\$		10	\$2.43		0.633149		100.0883		22.84403		122.9323	1994				
\$ \$		2.5	\$11.51	_	0.633149		100.0883		45.68806		145.7763	1994				
9 \$		1			0.633149		50.04413				156.2866	1994				
0 \$			\$46.79		0.633149		75.56664		42.92753		118.4939	1994				
1\$		1	\$115.54		0.633149	10.13039	200.1765	189.9448	195.086	0	585.2074	1994				
2 \$			\$16.05		0.633149	and the second se	125.1103		0		182.8915	1994				
3 \$		1	\$116.53		0.633149	899448	56.67498	126.6299	38.03962	0	221.3427	1994				
4 \$		1	\$68.95		0.633149	7.597793	150.1324	221.6023	152.1585	0	523.8932	1994				
5 \$		17.5	\$1.64		0.633149	2.532598	50.04413	0	22.84403	0	72.88816	1994				
6 \$		1	\$36.71		0.633149	2.532598	50.04413	0	42.92753	0	92.97166	1994				
7 \$		19.5	\$1.48		0.633149	2.532598	50.04413	0	22.84403	0	72.88816	1994				
8 \$		1	\$36.71		0.633149	5.065196	100.0883	0	85.85507	0	185.9433	1994				
9 \$		1.13	\$31.68		1	8	158.08	90.94	36.08	0	285.1	1994				
0 \$		2.5	\$10.44		0.633149	10.13039	200.1765	64.20135	0	0	264.3779	1994				
1 \$		1.25	\$24.49		0.633149	6.065196	100.0883	32.10068	22.84403	0	155.033	1994				
22 \$		20	\$1.64		0.633149	2.532598	50.04413	0	32.92377	0	82.9679	1994				
+ + H Data To	tal HRS Labor	Materials / Equipment	Stockpile	Sheet1	2			0	4							•
eady	and the second second	a state of a state of a												100%) (]
📀 🔲 🛛	0	🍥 🧐 👬												: • »	at to ¹	11:25 PN /14/201

Figure 5.19 Maintenance Cost Data Converted for a Specific Road Segment.

Figure 5.20 presents the data converted after considering the portion of work that happened within the road segment concerned. These data are in a separate spreadsheet, named 'Data' in the program written for this study. The data in the spreadsheet 'Data' is filtered to different cost categories: manpower, materials, equipment, and stockpile; each is contained in a separate spreadsheet as labeled correspondingly. These costs of different categories are further broken down into different maintenance activities, which are shown at the left lower corner in Figure 5.20. The total costs of these categories are presented in this spreadsheet and then copied and pasted to the cost master file.

Because of the four cases of maintenance work relevant to a given road segment, when filtering the MMS maintenance cost data, the criterion 'From MP' should be entered as "less than or equal to", and the value should be the ending mile post of the given road segment. The criterion 'TO MP' should be entered as "greater than or equal to," and the value should be the starting mile post of the given road segment. This filtering is different from the one in extracting the road characteristics data from the NDOT PMS database, which was given special care when the cost data were collected in this study.

The maintenance costs collected using the MS Excel program are saved in individual files that are labeled in the following format: prioritization category, county, route, from MP, to MP, life cycle stage. The life cycle stages are listed as follows:

- 1) Cat 1 After Reconstruction
- 2) Cat 2 After Reconstruction
- 3) Cat 3 After Reconstruction
- 4) Cat 3 After Flush Seal
- 5) Cat 3 After Chip Seal
- 6) Cat 4 After Construction
- 7) Cat 4 After Flush Seal
- 8) Cat 4 After 1st Chip Seal
- 9) Cat 4 After 2nd Chip Seal
- 10) Cat 5 After Reconstruction
- 11) Cat 5 Middle After Flush, Cat Middle After Chip
- 12) Cat 5 Last After Chip, Cat 5 Last After Flush

Figure 5.21 shows the data derived from these steps, which are used in the analysis.

e Home	Insert	Page I	.ayout	For	mulas Data Rev	iew	View		_				_	_	_		_	_	_	-	_	۵	? - 1
ss Web Text Get E	n From Ot t Sources xternal Data	т C	Existin	na R	Gonnections Generations Generation Generation Generations Connections	Z +	Sort	Filter	K Clear Reapply Advanced		Remove Duplicates			te What-II Analysis		Ungrou	p Subtotal Outline	♥클 Show De "클 Hide Def					
AC150	▼ (*		f _x																				
C D E	F G	н	1	1 K	L M N O	9997	2	5	T U V	W E	Y Z	AA A8 A	D AD 6	it af i	16 AH	a aj	AK AL	AM AN A	0 AP	AR AR	AS 6	T AU	67 AV
	21.74 31.	25 2000	2801	9999 2002	2"PBS-UAK-OG Feyffiult, Stillak	1993 1999 2000 2401 2002	3	5 5 0 8															
	21.5 42	.4	1999	1995 2009	Chip Planoling cantro, 2.5" PB5, with OS	1996 1997 1998 1998 1998	3 3 3 2 5																
		2003	2005	2002	2.5° cell recycle, 2.5° PBS uith 06 Fealfluch, Schlink	2003 2004 2005 2005	1																
A.21 U \$456 21.71 996	42.71 59 /	N	5092	1992 1993	ekip 15° caldwill 2.5° PDS with OG	1004 1995 1995 1997 1997	2 5 3 3 2	7 94 7 19 7 64 7 84	0.221 002015 00563.6 9 0.004 05922.6 0743.07 0 02.09 54752.1 00052.5 5 7.255 07031.4 07491.5 1 3.052 22167.3 10059 0.406 01227.6 0052.51 6	197.01 0 013.3 0 775.6 0 19745 0	45479.2 33962.7 12105 42395.5 50972.3 24091.1	05,234 994 523,994 995 162,795 996 191,264 997 39,775 996 70,561 999	C ON	US050 US050 US050 US050	50 59 5 50 59 5 53 59 5 53 59 5 53 59 5 58 59 5 50 59 5	r	0 A 0 A 0 A 0 A 0 A 0 A	2	098.82 098.82 098.82 098.82 098.82 098.82 098.82 098.82		617.667 05. 506 04. 630 90. 655	02.4 (0.4222) 5222 (0.4222) 5333 (0.4023) 5333 (0.4447) 5447 (0.4447) 512 (124) 512 (124)	93 8001908 C0 201108 76465
		2000	2001	2002	faştfluk.	2000 2001 2002		o o 50	426.3 0605.96 99998.4 49 8.256 11707 0654.35 6- 95.07 14156.4 26519.3 83	23.64 0 59.23 0	24409.2 24409.4 49414.5	65,601 2000 52,019 2001 40,019 2002	2 ON	US#50 US#50	50 59 E 59 60 E 58 59 E	t t	0 A 0 A 0 A	20	4309 4309 1		499.529 59. 557.353 59	5002 52.2353 4193 11.0553	70 1249 73 1249 73 1249
	69.52 70.	91 9997	2009	9996 2601	171 Hede Iaid, 2°PDS Link.OG Foqfflich, Stillak	19997 1998 1999 2000 2001		1				-	3										
			2005		chip, 2nd link	2002 2003 2004 2005 2006	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2															
	70.91	2009	2009		2*FBS uph OG fogfflark, Stillink ekip, Zudlink	2000 2001 2002	1 1	2															
► ► Sheet1	Sheet2	/Sh	eet3	/2/	,	2003 2004	2	2						()
destination and	press ENTE	R or ch	noose	Paste																3 Ш -	40% (-)-0-(1

Figure 5.21 Maintenance Costs and Road Characteristics Data in the Cost Data Master File.

CHAPTER 6

MAINTENANCE COST MODEL DEVELOPMENT

6.1 Regression Models for Roads in Priority Category 1

Figure 6.1.1 shows the overall life cycle for road maintenance in Priority Category 1. Linear regression models were developed for the following total maintenance cost and the component costs: labor, equipment, materials, and stockpiles. The results of the models are listed in Table 6.1, shown at the end of this section.

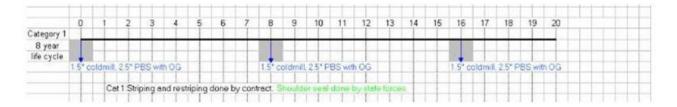


Figure 6.1.1 Life Cycle for Priority Category 1 Roads.

From Table 6.1 it can be seen that the coefficient for the variable age is positive; this implies that the total maintenance cost increases by year. In the last year before a reconstruction, certain maintenance work may not be performed; thus, the coefficient for the last year indicator is negative. The coefficient for the factor 'Asphalt Concrete' is positive, which indicates that the roads with asphalt concrete surfaces incur greater maintenance costs than rigid concrete pavement roads. The elevation of the road segment also is important to determine the amount of maintenance costs. The coefficient for the factor 'Elevation' is negative. This is because the data samples were taken from the Las Vegas area, where the highways I-15 and US 95 outside of the metropolitan area are at high elevation and therefore less maintained.

The maintenance activities vary with the conditions of roads that are influenced by the amount of traffic rolling over them. The greater number of vehicles that travel on the roads results in greater deterioration, which triggers more maintenance activities. The coefficient of AADT is positive, which is consistent with this expectation. From Table 6.1, it can be seen that these influencing factors have had similar impacts on labor, materials, and equipment costs. When the total maintenance cost is analyzed, the maintenance cost in the year when a reconstruction happened was significantly less than previous years. This observation can be validated from the model for

labor costs, which implies that those maintenance activities involving expensive equipment and materials were not performed during a year when major construction was scheduled.

For an assumed asphalt roadway segment in Category 1 with an elevation of 2,400 ft and an AADT of 27,000, the total maintenance costs for an eight-year life cycle can be calculated using the function coefficients given in Table 6.1. Figure 6.1.2 indicates that the total costs increase with year. The annual maintenance cost in the eighth year is lower than the linear trend because of the reconstruction work done that year.

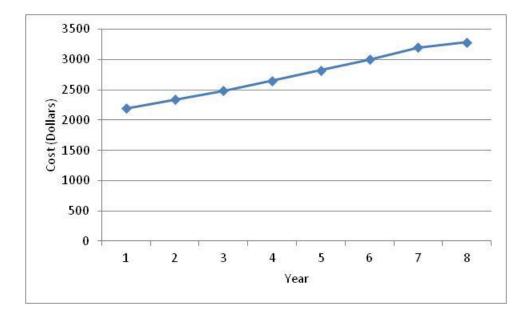


Figure 6.1.2 Total Maintenance Costs for an Eight-Year Life Cycle for Category 1 Roads.

Table 6.1 Regression Models for Road Maintenance Priority Category 1

Total Cost

******** ORDINARY LEAST SQUARES ESTIMATION ******** Dependent Variable: Intot Independent Estimated Standard t-Statistic t-Coefficient Variable Error 8.204680.5483814.961676.28091e-0021.25052e-0025.02264-0.348130.20126-1.729790.952570.219904.33179-9.52315e-0041.69739e-004-5.610452.81009e-0053.89760e-0067.20981 one age lyear ac elev aadt Number of Observations 201 0.47872 R-squared Corrected R-squared Sum of Squared Residuals 0.46536 1.57275e+002 Standard Error of the Regression 0.89808

0.58584

7.88086

Total Hours

Durbin-Watson Statistic

Mean of Dependent Variable

Dependent Varia	ble: lnhrs		
Independent Variable	Estimated Coefficient	Standard Error	t- Statistic
one age ac elev aadt	4.31240 5.97201e-002 0.81709 -9.31727e-004 2.37703e-005 1.13264e-004	0.54035 1.15936e-002 0.21217 1.60523e-004 3.83671e-006 5.26564e-005	7.98083 5.15113 3.85112 -5.80434 6.19549 2.15100

Number of Observations	201
R-squared	0.51110
Corrected R-squared	0.49856
Sum of Squared Residuals	1.39784e+002
Standard Error of the Regression	0.84666
Durbin-Watson Statistic	0.60668
Mean of Dependent Variable	4.07294

******** ORDINARY LEAST SQUARES ESTIMATION ********

Table 6.1 Regression Models for Road Maintenance Priority Category 1 (continued)

Labor Cost

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnlabor

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	7.65243	0.51194	14.94798
age	5.84997e-002	1.16742e-002	5.01104
lyear	-0.33534	0.18788	-1.78483
ac	0.91071	0.20529	4.43621
elev	-9.38479e-004	1.58459e-004	-5.92252
aadt	2.58324e-005	3.63858e-006	7.09957

Number of Observations	201
R-squared	0.47962
Corrected R-squared	0.46627
Sum of Squared Residuals	1.37066e+002
Standard Error of the Regression	0.83839
Durbin-Watson Statistic	0.48541
Mean of Dependent Variable	7.23326

Materials Cost

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Varia	able: lnma		
Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	5.87373	0.75837	7.74515
age	7.38305e-002	1.68890e-002	4.37151
ac	1.02915	0.30212	3.40644
elev	-8.36852e-004	2.36656e-004	-3.53615
aadt	3.46083e-005	5.37191e-006	6.44246

Number of Observations	200
R-squared	0.39212
Corrected R-squared	0.37965
Sum of Squared Residuals	3.00505e+002
Standard Error of the Regression	1.24139
Durbin-Watson Statistic	1.02064
Mean of Dependent Variable	6.20744

Table 6.1 Regression Models for Road Maintenance Priority Category 1 (continued)

Equipment Cost

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lneq

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	7.03420	0.59595	11.80334
age	6.51333e-002	1.33239e-002	4.88845
ac	0.92762	0.23842	3.89062
elev	-1.07228e-003	1.84905e-004	-5.79908
aadt	2.61492e-005	4.23932e-006	6.16825

Number of Observations	201
R-squared	0.44375
Corrected R-squared	0.43240
Sum of Squared Residuals	1.88127e+002
Standard Error of the Regression	0.97971
Durbin-Watson Statistic	0.59291
Mean of Dependent Variable	6.41503

Stockpiles Cost

******** ORDINARY LEAST SQUARES ESTIMATION ********

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	1.45340e+002	41.51972	3.50050
lyear	40.52599	15.08962	2.68569
ac	-51.63268	16.58173	-3.11383
elev	-3.60283e-002	1.30124e-002	-2.76877
aadt	-8.03229e-004	3.08695e-004	-2.60202
truck	7.03122e-003	4.25848e-003	1.65111

Number of Observations	201
R-squared	0.13047
Corrected R-squared	0.10817
Sum of Squared Residuals	9.22912e+005
Standard Error of the Regression	68.79593
Durbin-Watson Statistic	1.64201
Mean of Dependent Variable	19.86806

6.2 Regression Models for Roads in Priority Category 2

Figure 6.2.1 shows the overall life cycle for road maintenance in Priority Category 2. Table 6.2, shown at the end of this section, lists the results for the linear regression models for roads of maintenance priority Category 2.

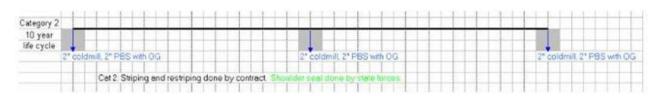


Figure 6.2.1 Life Cycle for Priority Category 2

From the scheduled maintenance, it can be seen that there is just one time segment for the roads classified under the maintenance priority Category 2. It starts right after the completion of a reconstruction, and ends at the next reconstruction. The results for the total cost in Table 6.2 shows that the total cost each year did not change with time. Total cost was significantly less than the previous year when the road was under reconstruction. This observation was similar to that for the roads in Category 1, which implies that some maintenance work may not need to be performed when a road is scheduled for reconstruction. The coefficient was positive, which indicates that the roads at high elevations tended to cost more for maintenance, probably due to the work during extreme weather, such as snow, for which additional work, such snow removal, has to be done.

The samples collected for Category 2 were from areas across the State of Nevada, unlike the case for Category 1, where the samples were taken from Clark County only. The coefficient for AADT was positive, which is consistent with the expectation that more traffic would accelerate the deterioration of roads and, thus, produce more conditions for maintenance. A similar pattern regarding the impact of influencing factors on total maintenance cost also can be found in the models for the component maintenance costs, except for the stockpile cost.

For road segments with an average elevation of 3,987 ft and an average AADT of 11,786, the profile of annual maintenance costs were calculated using the coefficients in Table 6.2, and are presented in Figure 6.2.2. It can be seen that the maintenance costs are constant until the last year, when they drop.

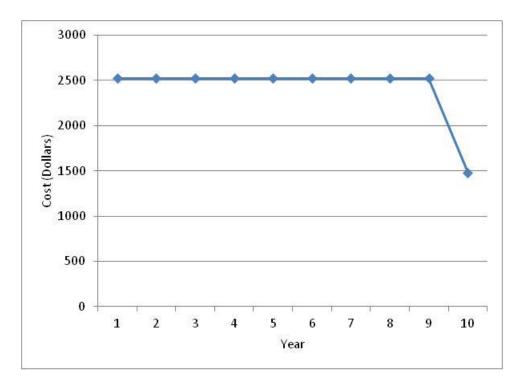


Figure 6.2.2 Total Maintenance Costs for a Ten-Year Life Cycle for Category 2 Roads.

Table 6.2 Regression Models for Road Maintenance Priority Category 2

Total Cost

******* ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: Intot

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	5.46705	0.44544	12.27327
lyear	-0.53229	0.21494	-2.47648
elev	4.81895e-004	9.19892e-005	5.23861
aadt	3.76878e-005	1.08794e-005	3.46415

Number of Observations	93
R-squared	0.26068
Corrected R-squared	0.23575
Sum of Squared Residuals	38.60876
Standard Error of the Regression	0.65864
Durbin-Watson Statistic	1.28637
Mean of Dependent Variable	7.76939

Total Hours

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnhrs

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	1.37219	0.39046	3.51430
elev	4.48795e-004	8.03320e-005	5.58675
aadt	4.83742e-005	9.44720e-006	5.12048

Number of Observations	93
R-squared	0.30269
Corrected R-squared	0.28720
Sum of Squared Residuals	30.30499
Standard Error of the Regression	0.58028
Durbin-Watson Statistic	1.67537
Mean of Dependent Variable	3.73149

Table 6.2 Regression Models for Road Maintenance Priority Category 2 (continued)

Labor Cost

******* ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnlabor

Independent Variable	Estimated Coefficient	Standard Error	t- Statistic
one	4.96110	0.38960	12.73369
elev	3.95786e-004	8.00296e-005	4.94550
<mark>urban</mark>	-0.32518	0.13213	-2.46100
aadt	4.40071e-005	9.81890e-006	4.48188

Number of Observations	93
R-squared	0.27885
Corrected R-squared	0.25454
Sum of Squared Residuals	29.71526
Standard Error of the Regression	0.57782
Durbin-Watson Statistic	1.44603
Mean of Dependent Variable	6.93872

Materials Cost

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnma

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	2.52197	0.74212	3.39834
lyear	-1.31390	0.35809	-3.66918
elev	8.60610e-004	1.53256e-004	5.61550
aadt	4.80663e-005	1.81253e-005	2.65190

Number of Observations	93
R-squared	0.31249
Corrected R-squared	0.28931
Sum of Squared Residuals	1.07164e+002
Standard Error of the Regression	1.09731
Durbin-Watson Statistic	1.58046
Mean of Dependent Variable	6.36397

Table 6.2 Regression Models for Road Maintenance Priority Category 2 (continued)

Equipment Cost

******* ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lneq

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	4.25812	0.47823	8.90389
lyear	-0.86702	0.23076	-3.75726
elev	4.30691e-004	9.87603e-005	4.36097
aadt	3.55617e-005	1.16802e-005	3.04463

Number of Observations	93
R-squared	0.25063
Corrected R-squared	0.22537
Sum of Squared Residuals	44.50166
Standard Error of the Regression	0.70712
Durbin-Watson Statistic	1.17276
Mean of Dependent Variable	6.29168

Stockpile Cost

******** ORDINARY LEAST SQUARES ESTIMATION ********

Independent Variable	Estimated Coefficient	Standard Error	t- Statistic
one	-32.15934	11.76033	-2.73456
age	3.33628	1.20597	2.76647
lyear	98.90339	14.29931	6.91665
truck	3.68374e-002	1.69156e-002	2.17772

93
0.51237
0.49593
1.43126e+005
40.10183
1.25756
22.45462

6.3 Regression Models for Roads in Priority Category 3

Three sets of linear regression models were developed, one set for each life cycle segment, as shown in Figure 6.3.1: After Construction, After Flush Seal, and After Chip Seal.

Category 3 12 year						-		-							-			-			_		F	Ŧ
life cycle	1				Flush	Seal		0	hip Se	al	11		1	11	1	1	lush S	eal			Chip S	Seal		+
	2" P	BSW	th OG									2	PBS	with O	G									-
-	+		Cat 3. F	leiuvin	ating ser	aland	thip ser	albvs	i tate for	Ces. V	/aterb	orne s	tripina.	annua	i restr	pe and	show	ider se	alby	i state f	orces		+	+

Figure 6.3.1 Life Cycle for Roads in Priority Category 3.

The results in Table 6.3, shown at the end of this section, on the regression models for the life cycle segments after reconstruction indicate that the coefficient for the last year maintenance activities is positive. This observation is consistent with practice, because the more maintenance activities are reserved for the time when a flush seal is performed. The maintenance cost between the reconstruction and flush seal can be viewed as constant over the years because the coefficient for age is not significant. The coefficient for elevation is positive, which makes sense because roads at higher elevations may have more chance of extreme weather as well as have other road features that need maintenance, such as guard rails. These observations also can be found in other maintenance cost components, including labor cost, equipment cost, and materials cost.

The results for the life cycle segment 'Flush Seal' indicates that only the variable representing the maintenance work when Chip Seal is performed is significant. This observation also is consistent with practice, leaving more maintenance work until when major preventive maintenance Chip Seal is performed. This result also can be found in other maintenance cost components.

In addition, Table 6.3 shows the results for the life cycle segment after 'Chip Seal', which ends at a reconstruction. Reflected in the results is that the coefficient for the maintenance cost at the year of reconstruction is negative because some maintenance activities may be saved for the major construction work. The coefficient for road elevation is positive, which is reasonable because more potential maintenance work could be created when a road is at a high elevation. Examples of such potential maintenance work are rail guard, slope, snow, etc. Traffic has a positive coefficient which is also consistent with intuitive. These observations can be found in the results for maintenance cost components.

Based on the results for these three life cycle segments, it can be seen that the maintenance costs in the year when construction, flush seal, and chip were performed are significantly different from those of other years. They are more or less than the regular year, depending upon the nature of the maintenance work. Elevation is an important influencing factor to the maintenance costs. Traffic is another factor that plays a significant role. Age does not show a significant impact on the maintenance cost.

Given the 12-year life cycle presented in Figure 6.3.1, for a road segment with average elevation of 4,900 ft and an AADT of 800, the annual maintenance profile can be calculated using the values in Table 6.3. As displayed in Figure 6.3.2, the profile shows that the annual maintenance costs jump when there are flush seal and chip seal, and drop when there is a reconstruction. The jump in maintenance cost caused by chip seal is more than that by flush seal. Within each life cycle, the annual maintenance costs are constant.

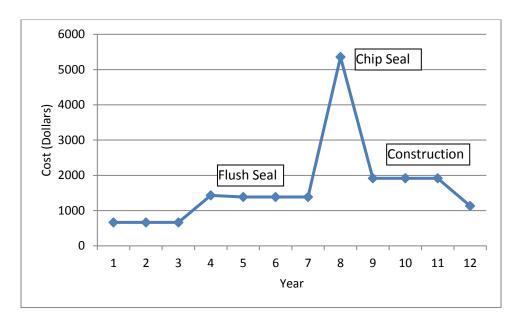


Figure 6.3.2 Total Maintenance Costs for a 12-Year Life Cycle for Category 3 Roads.

Reconstruction

******* ORDINARY LEAST SQUARES ESTIMATION ******** Dependent Variable: lntot Statistic Independent Estimated Standard Coefficient Variable Error 8.57101 5.22175 0.60923 one 0.24410 0.76511 lyear 3.13439 1.27936e-004 2.04131 elev 2.61157e-004 Number of Observations 88 0.14154 R-squared R-squared0.12134Corrected R-squared0.12134Sum of Squared Residuals80.97900Standard Error of the Regression0.976060.73424 Durbin-Watson Statistic0.73424Mean of Dependent Variable6.62413 reg dep[lnhrs] ind[one age lyear] ******** ORDINARY LEAST SQUARES ESTIMATION ******** Dependent Variable: lnhrs Independent Standard Estimated t-Coefficient Statistic Variable Error 0.21995 8.96344 one 1.97154 0.21993 7.58616e-002 0.28253 age 0.14556 1.91875 0.43480 lyear 0.28253 1.53893 Number of Observations 88 0.11877 R-squared Corrected R-squared 9.80306e-002 Sum of Squared Residuals 83.91110 Standard Error of the Regression 0.99357

reg dep[lnlabor] ind[one]

Mean of Dependent Variable

Durbin-Watson Statistic

0.78997

2.48882

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnlabor

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	6.22976	9.86522e-002	63.14873

Number of Observations	198
R-squared	0.00000e+000
Corrected R-squared	0.00000e+000
Sum of Squared Residuals	3.79616e+002
Standard Error of the Regression	1.38816
Durbin-Watson Statistic	0.85384
Mean of Dependent Variable	6.22976

reg dep[lnma] ind[one lyear elev]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnma

Independent Variable	Estimated Coefficient	Standard Error	t- Statistic
one	2.76351	0.80326	3.44035
lyear	1.36009	0.32184	4.22592
elev	4.61092e-004	1.68682e-004	2.73351

Number of Observations	88
R-squared	0.22988
Corrected R-squared	0.21176
Sum of Squared Residuals	1.40773e+002
Standard Error of the Regression	1.28692
Durbin-Watson Statistic	1.17834
Mean of Dependent Variable	5.24172

reg dep[lneq] ind[one elev]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lneq

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	3.23098	0.68499	4.71685
elev	3.99350e-004	1.44481e-004	2.76404

Number of Observations	88
R-squared	8.15880e-002
Corrected R-squared	7.09088e-002
Sum of Squared Residuals	1.04493e+002
Standard Error of the Regression	1.10228
Durbin-Watson Statistic	0.68411
Mean of Dependent Variable	5.09624

reg dep[stok] ind[one age elev aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Estimated	Standard	t-
Coefficient	Error	Statistic
89.06447	76.83410	1.15918
43.75804	6.52950	6.70159
-2.86068e-002	1.47717e-002	-1.93659
-3.90969e-002	1.18979e-002	-3.28604
	Coefficient 89.06447 43.75804 -2.86068e-002	CoefficientError89.0644776.8341043.758046.52950-2.86068e-0021.47717e-002

88
0.37090
0.34843
7.68497e+005
95.64921
1.24008
37.28352

Flush Seal

******* ORDINARY LEAST SQUARES ESTIMATION ******** Dependent Variable: 1ntot Independent Estimated Variable Coefficient Standard tt-Statistic Error one7.233588.94882e-00280.83270lyear1.352520.178327.58490 Number of Observations 135 0.30195 0.29670 R-squared R-squared0.29670Corrected R-squared0.29670Sum of Squared Residuals1.07573eStandard Error of the Regression0.899351.41182 1.07573e+002 Durbin-Watson Statistic1.41182Mean of Dependent Variable7.57421 reg dep[lnhrs] ind[one lyear] ******** ORDINARY LEAST SQUARES ESTIMATION ******** Dependent Variable: lnhrs Independent Estimated Variable Coefficient Standard tt-Statistic Error one 3.15771 lyear 0.96649 7.28452e-00243.348220.145156.65841 135 Number of Observations 0.25000 R-squared0.24437Corrected R-squared0.24437Sum of Squared Residuals71.28110Standard Error of the Regression0.73208Image: Statistic1.60848 R-squared Durbin-Watson Statistic1.60848Mean of Dependent Variable3.40112 reg dep[lnlabor] ind[one lyear]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnlabor

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	6.36667	7.74854e-002	82.16616
lyear	0.97188	0.15440	6.29458

Number of Observations	135
R-squared	0.22953
Corrected R-squared	0.22374
Sum of Squared Residuals	80.65149
Standard Error of the Regression	0.77872
Durbin-Watson Statistic	1.40677
Mean of Dependent Variable	6.61145

reg dep[lnma] ind[one lyear]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnma

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	5.46978	0.17230	31.74660
lyear	1.81760	0.34332	5.29418

Number of Observations	135
R-squared	0.17406
Corrected R-squared	0.16785
Sum of Squared Residuals	3.98766e+002
Standard Error of the Regression	1.73154
Durbin-Watson Statistic	1.32977
Mean of Dependent Variable	5.92755

reg dep[lneq] ind[one age lyear]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Vari	able: lneq		
Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	6.13286	0.19015	32.25351
age	-0.13997	7.10209e-002	-1.97088
lyear	1.07427	0.23502	4.57098

Number of Observations	135
R-squared	0.13777
Corrected R-squared	0.12471
Sum of Squared Residuals	1.36325e+002
Standard Error of the Regression	1.01625
Durbin-Watson Statistic	1.04165
Mean of Dependent Variable	6.02601

reg dep[stok] ind[one age lyear]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Independent Variable	Estimated Coefficient	Standard Error	t- Statistic
one	-55.04097	44.36715	-1.24058
age	53.67174	16.57150	3.23880
lyear	1.30811e+002	54.83762	2.38542

Number of Observations	135
R-squared	0.19918
Corrected R-squared	0.18705
Sum of Squared Residuals	7.42211e+006
Standard Error of the Regression	2.37125e+002
Durbin-Watson Statistic	1.33741
Mean of Dependent Variable	1.22619e+002

Chip Seal

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: Intot

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	5.95503	0.46492	12.80873
lyear	-0.52712	0.18476	-2.85306
elev	2.29486e-004	8.29841e-005	2.76542
aadt	5.97617e-004	1.41487e-004	4.22384

Number of Observations	87
R-squared	0.21895
Corrected R-squared	0.19072
Sum of Squared Residuals	43.65673
Standard Error of the Regression	0.72525
Durbin-Watson Statistic	1.17554
Mean of Dependent Variable	7.40151

reg dep[lnhrs] ind[one lyear aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Varia	able: lnhrs		
Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	2.84278	0.13493	21.06839
lyear	-0.37616	0.19367	-1.94228
aadt	5.25182e-004	1.33687e-004	3.92846

Number of Observations	87
R-squared	0.17414
Corrected R-squared	0.15448
Sum of Squared Residuals	49.55862
Standard Error of the Regression	0.76810
Durbin-Watson Statistic	1.09025
Mean of Dependent Variable	3.15083

reg dep[lnlabor] ind[one lyear elev aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnlabor

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	5.37183	0.44704	12.01641
lyear	-0.48416	0.17765	-2.72532
elev	1.51135e-004	7.97929e-005	1.89409
aadt	6.34517e-004	1.36046e-004	4.66399

Number of Observations	87
R-squared	0.23756
Corrected R-squared	0.21000
Sum of Squared Residuals	40.36365
Standard Error of the Regression	0.69736
Durbin-Watson Statistic	1.10702
Mean of Dependent Variable	6.47436

reg dep[lnma] ind[one age lyear elev aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnma

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	4.13053	0.70597	5.85082
age	0.11679	6.19514e-002	1.88524
lyear	-0.87590	0.27677	-3.16474
elev	2.70935e-004	1.18212e-004	2.29195
aadt	6.77556e-004	1.99749e-004	3.39203

Number of Observations	87
R-squared	0.18955
Corrected R-squared	0.15002
Sum of Squared Residuals	85.54387
Standard Error of the Regression	1.02138
Durbin-Watson Statistic	1.30449
Mean of Dependent Variable	6.11288

reg dep[lneq] ind[one lyear elev aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lneq

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	4.00296	0.52272	7.65788
lyear	-0.63538	0.20773	-3.05871
elev	3.50827e-004	9.33017e-005	3.76014
aadt	5.96674e-004	1.59078e-004	3.75083

Number of Observations	87
R-squared	0.22961
Corrected R-squared	0.20177
Sum of Squared Residuals	55.18755
Standard Error of the Regression	0.81542
Durbin-Watson Statistic	1.14769
Mean of Dependent Variable	6.01471

reg dep[stok] ind[one lyear]

******** ORDINARY LEAST SQUARES ESTIMATION ********

	ependent ciable	Estimated Coefficient	Standard Error	t- Statistic
002	one	0.38273	6.87423	5.56757e-
002	lyear	35.19203	13.99181	2.51519

Number of Observations	87
R-squared	6.92701e-002
Corrected R-squared	5.83204e-002
Sum of Squared Residuals	2.65100e+005
Standard Error of the Regression	55.84648
Durbin-Watson Statistic	1.96267
Mean of Dependent Variable	8.87736

6.4 Regression Models for Roads in Priority Category 4

Four linear regression models were developed, one for each life cycle segment, as shown in Figure 6.4.1: After Reconstruction, After Flush Seal, After First Chip Seal, and After The Second Chip Seal. Each life cycle segment starts at the next year, after the major maintenance activities, and ends when these major maintenance activities are performed. The results of the model are presented in Table 6.4, shown at the end of this section. The development of these linear regression models is presented in the following sections.

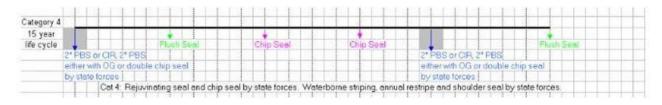
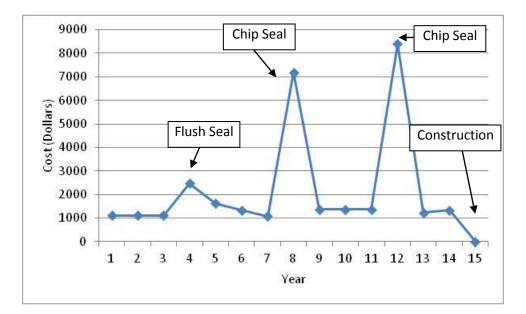
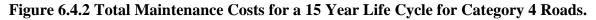


Figure 6.4.1 Life Cycles for Roads in Priority Category 4.

The results for the models estimating total maintenance cost for the first life cycle segment indicates that the coefficient for the maintenance activities performed in the last year is positive. This implies that more expenditure was incurred in the last year, during flush seal, due to a major preventive maintenance that also was performed. Another significant variable is traffic flow, which is consistent with expectations. These findings can be found in the models for the four cost components: labor, equipment, materials, and stockpile.


Relatively more variables are identified significant to the maintenance cost for the second life cycle segment starting after flush seal is performed. It can be seen that the variable representing the last year is significant, which is reasonable. Traffic flow is also significant. Age is significant, but with a negative coefficient. If this life cycle span is short – and frequently many maintenance activities are reserved for the last year – it is possible that the maintenance cost appears to decline with year; this has been confirmed in some responses to the survey conducted in this study from several state DOT maintenance divisions. In addition, where that maintenance was performed is important. The results indicate that the maintenances in District 1 and 2, highly likely chip seal, are more expensive than those in District 3, and those in District 2 are more expensive than in District 1. This is probably due to the fact that maintenance in District 2 was more complicated, involving more sophisticated technologies than in other districts. Another significant variable is elevation: the higher a road is located, the more expensive to maintain it, which is intuitively consistent. These findings can be found based on the results for the four maintenance cost components.


The results for the third segment, starting from after a chip seal and ending at another chip seal, indicate that there are fewer variables that are significant. Whether or not a chip seal was performed in a year is important. The coefficient for the variable representing the last year, the year with a chip seal was performed, was positive, which is reasonable. Compared to the results

for the second life cycle segment, during which District 2 performed their most expensive maintenance work, District 1 did their costly maintenance for the third life cycle segment. The results for the four cost components indicate that the material costs between Districts 1 and 2 are the same statistically. Therefore, this discrepancy may be due to the type of equipment used for the second chip seal, which may vary in different districts.

The results for the last life cycle segment were very different from those for the first three segments. For example, age is significant. Also, the total maintenance cost increased with year, which is understandable. The coefficient for the maintenance cost incurred in the last year was negative, which implies that maintenance in the last year maintenance was cheaper because more maintenance were done during the year reconstruction was performed. Among the three districts, District 1 was the least expensive. This observation also is relevant to maintenance practices, probably because different materials are used in different districts. This observation can be found from the results for the four cost components: labor, materials, equipment, and stockpiles. Traffic flow AADT is significant, which is consistent with expectations.

The profile of annual maintenance cost is calculated using the values of the coefficients in Table 6.4, and is presented in Figure 6.4.2. The road segment is assumed to be located in District 1. Its elevation is 4,700 ft, and it carries traffic with an AADT of 280. It can be seen that the annual maintenance costs increase when there are flush seal and chip seals. They decrease when there is a construction. The increase with flush seal is noticeably less than that with chip seal. The first chip seal incurs less cost than the second one.

Table 6.4 Linear Regression Models for the Roads in Category 4

Reconstruction

******** ORDINARY LEAST SQUARES ESTIMATION ******** Dependent Variable: Intot Independent Estimated Standard Variable Coefficient Error t-Statistic 6.844340.136470.795900.163316.28703e-0042.73911e-004 50.15368 one lyear 4.87348 aadt 2.29528 97 Number of Observations R-squared Corrected R-squared Sum of Squared Residuals Standard Error of the Regression 0.25707 0.24126 41.90758 0.66770 1.13801 Mean of Dependent Variable 7.29449 reg dep[lnhrs] ind[one lyear dist2 elev] ******* ORDINARY LEAST SQUARES ESTIMATION ******** Dependent Variable: lnhrs Independent Estimated Variable Coefficient Standard tt-Statistic Error 0.34573 1.79418 5.18949 one 0.790600.160240.322120.136831.98493e-0046.72233e-005 lyear 4.93391 dist2 2.35415 elev 2.95274 Number of Observations 97 0.28019 R-squared Corrected R-squared Sum of Squared Residuals Standard Error of the Regression R-squared 0.25697 40.44829 0.65949

reg dep[lnlabor] ind[one lyear elev aadt]

Durbin-Watson Statistic Mean of Dependent Variable 1.08792

3.08793

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnlabor

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	5.13562	0.33914	15.14314
lyear	0.60321	0.16132	3.73924
elev	1.84367e-004	6.63267e-005	2.77967
aadt	5.36600e-004	2.70457e-004	1.98405

Number of Observations	97
R-squared	0.23547
Corrected R-squared	0.21081
Sum of Squared Residuals	40.42256
Standard Error of the Regression	0.65928
Durbin-Watson Statistic	1.33174
Mean of Dependent Variable	6.37113

reg dep[lnma] ind[one lyear dist1 aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnma

Estimated	Standard	t-
Coefficient	Error	Statistic
5.59434	0.14065	39.77414
1.20364	0.15429	7.80099
-0.49562	0.16484	-3.00669
7.02351e-004	2.64015e-004	2.66027
	Coefficient 5.59434 1.20364 -0.49562	Coefficient Error 5.59434 0.14065 1.20364 0.15429 -0.49562 0.16484

.49153
.47495
.51409
.62999
.69645
.07392

reg dep[lneq] ind[one lyear]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	5.76825	0.10346	55.75149
lyear	0.51890	0.21725	2.38850

Number of Observations	97
R-squared	5.66498e-002
Corrected R-squared	4.67198e-002
Sum of Squared Residuals	76.27112
Standard Error of the Regression	0.89602
Durbin-Watson Statistic	1.00718
Mean of Dependent Variable	5.88594
Sum of Squared Residuals Standard Error of the Regression Durbin-Watson Statistic	76.27112 0.89602 1.00718

reg dep[stok] ind[one lyear dist1]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	-1.57636	6.50269	-0.24242
lyear	34.72719	12.39283	2.80220
dist1	45.63792	12.82780	3.55774

Number of Observations	97
R-squared	0.17457
Corrected R-squared	0.15701
Sum of Squared Residuals	2.45312e+005
Standard Error of the Regression	51.08523
Durbin-Watson Statistic	1.18501
Mean of Dependent Variable	15.70979

Flush Seal

******** ORDINARY LEAST SQUARES ESTIMATION ******** Dependent Variable: lntot Independent Estimated Standard t.-Coefficient Variable Statistic Error 0.79175 6.26297e-002 0.20415 0.21830 0.19924 5.19255 6.55835 one age -0.20196 -3.22469 lyear dist1 2.09167 10.24556 0.37462 0.84941 1.71610 dist2 4.26331 1.30377e-004 3.41515e-004 3.97635e-004 3.04989 elev 5.71083e-004 -6.07142e-003 1.67221 aadt 3.59775e-003 -1.68756 truck Number of Observations 78 0.70287 R-squared Corrected R-squared Sum of Squared Residuals 0.67316 27.71478 Standard Error of the Regression0.62923Durbin-Watson Statistic1.42622 Mean of Dependent Variable 7.68789 reg dep[lnhrs] ind[one lyear dist2 elev] ******* ORDINARY LEAST SQUARES ESTIMATION ******** Dependent Variable: lnhrs Independent Estimated Standard t-Independent Estimated Variable Coefficient Statistic Error 0.52764 -0.82473 -0.43516 one 0.16348 0.16166 1.38028 1.20791 8.44319 lyear dist2 7.47173 5.96518e-004 9.17628e-005 elev 6.50065 Number of Observations 78 0.64404 R-squared Corrected R-squared Sum of Squared Residuals 0.62961 28.35484 Standard Error of the Regression 0.61901

reg dep[lnlabor] ind[one lyear dist2 elev]

Mean of Dependent Variable

Durbin-Watson Statistic

1.53793

3.55871

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnlabor

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	2.38281	0.54250	4.39225
lyear	1.25990	0.16808	7.49565
dist2	1.07410	0.16622	6.46196
elev	6.78541e-004	9.43481e-005	7.19188

Number of Observations	78
R-squared	0.61238
Corrected R-squared	0.59666
Sum of Squared Residuals	29.97511
Standard Error of the Regression	0.63645
Durbin-Watson Statistic	1.46192
Mean of Dependent Variable	6.72726

reg dep[lnma] ind[one age lyear dist2]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnma

Estimated	Standard	t-
Coefficient	Error	Statistic
6.16959	0.28903	21.34551
-0.29715	0.10351	-2.87087
3.07651	0.34700	8.86597
0.60091	0.25766	2.33222
	Coefficient 6.16959 -0.29715 3.07651	CoefficientError6.169590.28903-0.297150.103513.076510.34700

Number of Observations	78
R-squared	0.53765
Corrected R-squared	0.51891
Sum of Squared Residuals	90.86965
Standard Error of the Regression	1.10814
Durbin-Watson Statistic	1.42356
Mean of Dependent Variable	6.34646

reg dep[lneq] ind[one age lyear dist1 dist2 elev]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lneq

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	2.14434	0.76851	2.79024
age	-0.25160	7.70902e-002	-3.26374
lyear	1.53446	0.25827	5.94137
dist1	0.70683	0.28343	2.49387
dist2	1.20197	0.22563	5.32727
elev	6.91082e-004	1.40269e-004	4.92683

78
0.55599
0.52516
48.94189
0.82447
1.49037
6.15327

reg dep[stok] ind[one lyear]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Varia	able: stok		
Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	16.18390	25.01001	0.64710
lyear	1.46959e+002	50.67391	2.90010

Number of Observations	78
R-squared	9.96387e-002
Corrected R-squared	8.77919e-002
Sum of Squared Residuals	2.80475e+006
Standard Error of the Regression	1.92106e+002
Durbin-Watson Statistic	1.75799
Mean of Dependent Variable	51.98167

Chip Seal - 1

******* ORDINARY LEAST SQUARES ESTIMATION *******

Dependent Variable: Intot

Independent Variable	Estimated Coefficient	Standard Error	t- Statistic
one	6.91182	0.11215	61.63111
lyear	1.81242	0.19820	9.14448
dist1	0.31118	0.15951	1.95086

Number of Observations	110
R-squared	0.45590
Corrected R-squared	0.44573
Sum of Squared Residuals	73.75395
Standard Error of the Regression	0.83023
Durbin-Watson Statistic	1.50296
Mean of Dependent Variable	7.41292

reg dep[lnhrs] ind[one lyear]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnhrs

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	2.97678	7.89735e-002	37.69336
lyear	1.34552	0.17659	7.61945

Number of Observations	110
R-squared	0.34962
Corrected R-squared	0.34360
Sum of Squared Residuals	59.27470
Standard Error of the Regression	0.74084
Durbin-Watson Statistic	1.38694
Mean of Dependent Variable	3.24588

reg dep[lnlabor] ind[one lyear dist1 dist2]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnlabor

Independent Variable	Estimated Coefficient	Standard Error	t- Statistic
one	5.64555	0.21227	26.59612
lyear	1.29042	0.17225	7.49169
dist1	0.74466	0.23196	3.21034
dist2	0.63657	0.23240	2.73915

Number of Observations	110
R-squared	0.38250
Corrected R-squared	0.36502
Sum of Squared Residuals	54.95567
Standard Error of the Regression	0.72003
Durbin-Watson Statistic	1.43947
Mean of Dependent Variable	6.51891

reg dep[lnma] ind[one lyear]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnma

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	5.47692	0.13377	40.94294
lyear	2.49629	0.29912	8.34551

Number of Observations	110
R-squared	0.39205
Corrected R-squared	0.38643
Sum of Squared Residuals	1.70068e+002
Standard Error of the Regression	1.25487
Durbin-Watson Statistic	1.87527
Mean of Dependent Variable	5.97618

reg dep[lneq] ind[one lyear dist1]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lneq

Independent Variable	Estimated Coefficient	Standard Error	t- Statistic
one	5.48704	0.13220	41.50479
lyear	1.33063	0.23364	5.69523
dist1	0.32468	0.18803	1.72669

Number of Observations	110
R-squared	0.25491
Corrected R-squared	0.24098
Sum of Squared Residuals	1.02490e+002
Standard Error of the Regression	0.97870
Durbin-Watson Statistic	1.21138
Mean of Dependent Variable	5.89780

reg dep[stok] ind[one lyear aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Independent Variable	Estimated Coefficient	Standard Error	t- Statistic
one	-1.26382e+002	87.09322	-1.45111
lyear	2.10994e+002	99.50933	2.12034
aadt	0.50844	0.26590	1.91219

Number of Observations	110
R-squared	7.62163e-002
Corrected R-squared	5.89493e-002
Sum of Squared Residuals	1.85374e+007
Standard Error of the Regression	4.16229e+002
Durbin-Watson Statistic	1.95342
Mean of Dependent Variable	62.04891

Chip Seal – 2

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: Intot

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	6.16464	0.61684	9.99388
age	7.30700e-002	4.75945e-002	1.53526
lyear	-0.51297	0.21971	-2.33473
dist1	-0.35433	0.19684	-1.80010
elev	1.73129e-004	7.67915e-005	2.25453
aadt	1.51324e-003	7.35471e-004	2.05750
truck	-1.29371e-002	6.05241e-003	-2.13752

Number of Observations	89
R-squared	0.29611
Corrected R-squared	0.24460
Sum of Squared Residuals	53.28508
Standard Error of the Regression	0.80611
Durbin-Watson Statistic	1.64815
Mean of Dependent Variable	7.01842

reg dep[lnhrs] ind[one dist1 elev aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnhrs

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	1.39599	0.57589	2.42407
dist1	-0.45117	0.19396	-2.32614
elev	2.33741e-004	7.73284e-005	3.02270
aadt	1.71945e-003	7.22166e-004	2.38096

Number of Observations	89
R-squared	0.22166
Corrected R-squared	0.19419
Sum of Squared Residuals	59.66098
Standard Error of the Regression	0.83779
Durbin-Watson Statistic	1.80314
Mean of Dependent Variable	2.86938

reg dep[lnlabor] ind[one age lyear elev aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnlabor

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	4.05502	0.47710	8.49922
age	0.12064	4.42940e-002	2.72354
lyear	-0.65300	0.20709	-3.15322
elev	2.91755e-004	6.84721e-005	4.26093
aadt	1.77472e-003	6.58573e-004	2.69479

Number of Observations	89
R-squared	0.27943
Corrected R-squared	0.24512
Sum of Squared Residuals	52.27229
Standard Error of the Regression	0.78885
Durbin-Watson Statistic	1.59022
Mean of Dependent Variable	6.24271

reg dep[lnma] ind[one dist1]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Varia	able: lnma		
Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	5.70053	0.15453	36.88976
dist1	-0.79064	0.23831	-3.31764

Number of Observations	88
R-squared	0.11346
Corrected R-squared	0.10315
Sum of Squared Residuals	1.04734e+002
Standard Error of the Regression	1.10356
Durbin-Watson Statistic	2.00749
Mean of Dependent Variable	5.36810

reg dep[lneq] ind[one age lyear elev aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lneq

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	3.50169	0.57218	6.11988
age	0.13717	5.31210e-002	2.58223
lyear	-0.76871	0.24836	-3.09514
elev	3.18557e-004	8.21175e-005	3.87929
aadt	1.34731e-003	7.89815e-004	1.70586

Number of Observations	89
R-squared	0.24758
Corrected R-squared	0.21175
Sum of Squared Residuals	75.18215
Standard Error of the Regression	0.94606
Durbin-Watson Statistic	1.47283
Mean of Dependent Variable	5.71003

reg dep[stok] ind[one lyear]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Varia	able: stok		
Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	3.66500	4.96974	0.73746
lyear	16.86881	10.23103	1.64879

Number of Observations	89
R-squared	3.03004e-002
Corrected R-squared	1.91544e-002
Sum of Squared Residuals	1.46115e+005
Standard Error of the Regression	40.98155
Durbin-Watson Statistic	1.93233
Mean of Dependent Variable	7.64528

6.5 Regression Models for Roads in Priority Category 5

There is no clear definition on the life cycle for the road in Priority Category 5, as seen in Figure 6.5.1. For simplicity, three segments were proposed for the life cycle: first, second, and third. The first segment starts after the completion of reconstruction, such as 2" PBS with OG, and ends at a flush seal or a chip seal. The second segment starts after a flush seal or a chip seal and ends at the completion of another flush seal or chip seal. The third segment starts after a flush or a chip seal and ends at a construction. The second segment could be repeated for many times; this is different from the life cycle segments for Category 4, where the middle segments are each performed one time only.

Iffe cycle Cat 5: Maintenance will maintain roads in this category (See rehabilitation guidlines.) Flush Seal - usually performed 4 to 5 years ofter construction Chip Seal - has a 5 to 7 year longovity	Category 5 20 year	
	life cycle	Cat 5: Maintenance will maintain roads in this category (See rehabilitation guidlines.)

Figure 6.5.1 Life Cycles for Roads in Priority Category 5.

The results for the first life cycle segment in Table 6.5 show that age, the last maintenance, and elevation are significant factors influencing the maintenance cost each year. It is a natural expectation that total maintenance cost increases with year because declining road conditions generate more maintenance work. The last year maintenance, which is either flush seal or chip seal, involves more expensive materials or equipment. The elevation where a road is located also influences maintenance cost. The higher a road is located, the more expensive to maintain it. All these observations can be found in the models for the four maintenance cost components.

The results for the second life cycle segment indicate that the last year maintenance and elevation of roads both influence maintenance costs significantly. The impact of aging cannot be found in the result, probably due to the fact that the samples are the combination of life segments that started or ended with flush seals or chip seals, which could be performed at different stages of road deterioration conditions. Traffic flow shows a positive impact.

The results for the last life cycle segment show that age and the last year maintenance (reconstruction) are significant factors. It is understandable that more maintenance is needed as roads age. In the last year, when reconstructions were performed, some costs of these reconstructions were counted as maintenance as those for flush seals or chip seals. Thus, the last year maintenance cost becomes outstanding.

The annual maintenance profile is produced and presented in Figure 6.5.2. The values of the coefficients in Table 6.5 are used in calculating the annual maintenance costs. It is assumed that a road segment has an elevation of 5, 000 ft and has and AADT of 130. It can be seen from

Figure 6.5.2 that the annual maintenance costs increase significantly during such events as flush/chip seals and construction.

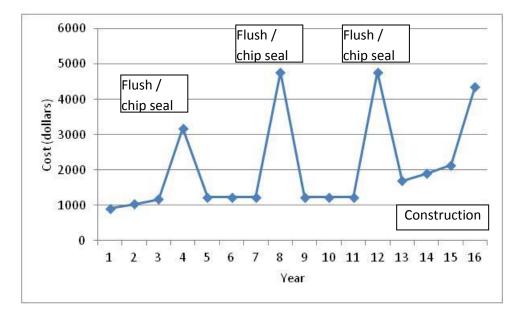


Figure 6.5.2 Total Maintenance Costs for a 16 Year Life Cycle for Category 5 Roads.

Table 6.5 Linear Regression Models for the Roads in Category 5

1st

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: Intot

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	4.73205	0.47258	10.01314
age	0.12385	4.50500e-002	2.74927
lyear	0.87737	0.17353	5.05593
elev	3.91701e-004	9.00566e-005	4.34950

Number of Observations	159
R-squared	0.31564
Corrected R-squared	0.30239
Sum of Squared Residuals	1.17079e+002
Standard Error of the Regression	0.86911
Durbin-Watson Statistic	1.22265
Mean of Dependent Variable	7.21153

reg dep[lnhrs] ind[one age lyear elev]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnhrs

Independent Variable	Estimated Coefficient	Standard Error	t- Statistic
one	0.98497	0.47155	2.08877
age	0.10948	4.49519e-002	2.43543
lyear	0.75458	0.17316	4.35782
elev	3.06256e-004	8.98603e-005	3.40814

Number of Observations	159
R-squared	0.24844
Corrected R-squared	0.23390
Sum of Squared Residuals	1.16569e+002
Standard Error of the Regression	0.86721
Durbin-Watson Statistic	1.07361
Mean of Dependent Variable	2.97677

reg dep[lnlabor] ind[one lyear elev]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnlabor

Independent Variable	Estimated Coefficient	Standard Error	t- Statistic
one	4.32551	0.42914	10.07945
lyear	0.78063	0.15558	5.01760
elev	3.48566e-004	8.71128e-005	4.00132

Number of Observations	159
R-squared	0.21759
Corrected R-squared	0.20756
Sum of Squared Residuals	1.12736e+002
Standard Error of the Regression	0.85010
Durbin-Watson Statistic	1.06168
Mean of Dependent Variable	6.21859

reg dep[lnma] ind[one age lyear elev]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnma

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	1.77701	0.86607	2.05181
	0.25317	8.25596e-002	3.06651
age lyear	1.22293	0.31802	3.84543
elev	5.75305e-004	1.65039e-004	3.48586

Number of Observations	159
R-squared	0.24861
Corrected R-squared	0.23406
Sum of Squared Residuals	3.93208e+002
Standard Error of the Regression	1.59274
Durbin-Watson Statistic	1.27189
Mean of Dependent Variable	5.60475

reg dep[lneq] ind[one lyear elev]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lneq

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	2.45308	0.50058	4.90043
lyear	0.88297	0.18148	4.86544
elev	6.22756e-004	1.01615e-004	6.12858

Number of Observations	159
R-squared	0.29250
Corrected R-squared	0.28343
Sum of Squared Residuals	1.53397e+002
Standard Error of the Regression	0.99162
Durbin-Watson Statistic	1.23586
Mean of Dependent Variable	5.70657

reg dep[stok] ind[one age elev aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: stok

Independent Variable	Estimated Coefficient	Standard Error	t- Statistic
one	71.28619	49.00906	1.45455
age	25.91464	4.28484	6.04798
elev	-3.92178e-002	9.37271e-003	-4.18426
aadt	0.72358	0.10892	6.64315

Number of Observations	159
R-squared	0.39680
Corrected R-squared	0.38513
Sum of Squared Residuals	1.25658e+006
Standard Error of the Regression	90.03868
Durbin-Watson Statistic	0.91552
Mean of Dependent Variable	41.95333

2nd

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: Intot

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	5.57972	0.24429	22.84037
lyear	1.35616	0.10931	12.40674
elev	2.27820e-004	4.75289e-005	4.79329
aadt	3.03482e-003	7.75647e-004	3.91263

Number of Observations	448
R-squared	0.31913
Corrected R-squared	0.31453
Sum of Squared Residuals	4.37368e+002
Standard Error of the Regression	0.99250
Durbin-Watson Statistic	1.86332
Mean of Dependent Variable	7.38172

reg dep[lnhrs] ind[one lyear elev aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Varia	able: lnhrs		
Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	1.32745	0.21011	6.31786
lyear	0.88479	9.40139e-002	9.41127
elev	2.79761e-004	4.08786e-005	6.84369
aadt	2.12973e-003	6.67118e-004	3.19243

Number of Observations	448
R-squared	0.26379
Corrected R-squared	0.25882
Sum of Squared Residuals	3.23537e+002
Standard Error of the Regression	0.85363
Durbin-Watson Statistic	1.91825
Mean of Dependent Variable	3.15321

reg dep[lnlabor] ind[one lyear elev aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnlabor

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	4.64925	0.20747	22.40961
lyear	0.91641	9.28310e-002	9.87185
elev	2.46666e-004	4.03643e-005	6.11100
aadt	2.35182e-003	6.58724e-004	3.57026

Number of Observations	448
R-squared	0.26692
Corrected R-squared	0.26197
Sum of Squared Residuals	3.15447e+002
Standard Error of the Regression	0.84289
Durbin-Watson Statistic	1.77882
Mean of Dependent Variable	6.35050

reg dep[lnma] ind[one lyear aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnma

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	4.52583	0.18490	24.47656
lyear	2.38705	0.18875	12.64682
aadt	5.12930e-003	1.33309e-003	3.84767

Number of Observations	446
R-squared	0.29295
Corrected R-squared	0.28976
Sum of Squared Residuals	1.29975e+003
Standard Error of the Regression	1.71289
Durbin-Watson Statistic	1.55113
Mean of Dependent Variable	5.74258

reg dep[lneq] ind[one age lyear elev aadt]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lneq

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	4.29400	0.29732	14.44254
age	-0.10612	3.07889e-002	-3.44663
lyear	1.04501	0.13215	7.90795
elev	2.52489e-004	5.38903e-005	4.68523
aadt	2.04244e-003	8.90404e-004	2.29384

Number of Observations	448
R-squared	0.18904
Corrected R-squared	0.18172
Sum of Squared Residuals	5.59999e+002
Standard Error of the Regression	1.12432
Durbin-Watson Statistic	1.51583
Mean of Dependent Variable	5.70223

reg dep[stok] ind[one age elev]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Varia	able: stok		
Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	-2.45565e+002	47.48767	-5.17113
age	43.44821	4.84057	8.97584
elev	4.70426e-002	9.07278e-003	5.18503

448
0.18857
0.18492
1.60915e+007
1.90159e+002
0.81661
1.09979e+002

3rd

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: Intot

Independent Variable	Estimated Coefficient	Standard Error	t- Statistic
one	7.31532	0.25695	28.47024
age	0.11737	8.69821e-002	1.34939
lyear	0.59437	0.32084	1.85257

Number of Observations	94
R-squared	8.76198e-002
Corrected R-squared	6.75674e-002
Sum of Squared Residuals	1.39640e+002
Standard Error of the Regression	1.23875
Durbin-Watson Statistic	1.30803
Mean of Dependent Variable	7.79547

reg dep[lnhrs] ind[one age]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Varia	able: lnhrs		
Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	2.98440	0.26085	11.44111
age	0.19261	8.08280e-002	2.38296

Number of Observations	94
R-squared	5.81346e-002
Corrected R-squared	4.78969e-002
Sum of Squared Residuals	1.46151e+002
Standard Error of the Regression	1.26040
Durbin-Watson Statistic	1.20442
Mean of Dependent Variable	3.52330

reg dep[lnlabor] ind[one age]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lnlabor

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	6.31538	0.25468	24.79744
age	0.19669	7.89160e-002	2.49238

Number of Observations	94
R-squared	6.32504e-002
Corrected R-squared	5.30684e-002
Sum of Squared Residuals	1.39319e+002
Standard Error of the Regression	1.23058
Durbin-Watson Statistic	1.25373
Mean of Dependent Variable	6.86568

reg dep[lnma] ind[one lyear]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent	Variable:	lnma
-----------	-----------	------

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	6.20010	0.14017	44.23313
lyear	0.63605	0.27740	2.29287

Number of Observations	94
R-squared	5.40553e-002
Corrected R-squared	4.37733e-002
Sum of Squared Residuals	1.26528e+002
Standard Error of the Regression	1.17273
Durbin-Watson Statistic	1.63659
Mean of Dependent Variable	6.36249

reg dep[lneq] ind[one lyear]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: lneq

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	6.31784	0.16710	37.80960
lyear	0.78032	0.33069	2.35967

Number of Observations	94
R-squared	5.70681e-002
Corrected R-squared	4.68188e-002
Sum of Squared Residuals	1.79812e+002
Standard Error of the Regression	1.39803
Durbin-Watson Statistic	1.26073
Mean of Dependent Variable	6.51707

reg dep[stok] ind[one elev]

******** ORDINARY LEAST SQUARES ESTIMATION ********

Dependent Variable: stok

Independent	Estimated	Standard	t-
Variable	Coefficient	Error	Statistic
one	-1.63081e+002	79.83112	-2.04283
elev	3.70583e-002	1.55560e-002	2.38225

Number of Observations	94
R-squared	5.81018e-002
Corrected R-squared	4.78638e-002
Sum of Squared Residuals	1.35038e+006
Standard Error of the Regression	1.21153e+002
Durbin-Watson Statistic	1.18820
Mean of Dependent Variable	24.75170

6.6 Summary

The annual maintenance cost profiles for these five categories of roads are presented in Figure 6.6.1. It is clear that the annual maintenance costs for Categories 1 and 2 are higher than that for the other three categories. Whether or not there are major preventive or reconstruction activities significantly influences the maintenance cost, and has to be considered in calculating the annual maintenance costs.

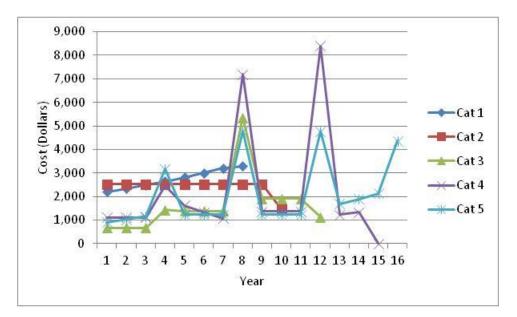


Figure 6.6.1 Comparison of Annual Maintenance Profile for Categories 1, 2, 3, 4, and 5.

CHAPTER 7

CONCLUSIONS AND FUTURE STUDY NEEDS

Conclusions

In this study, linear regression models were developed to estimate annual maintenance costs. Five priority categories of roads were considered, which is consistent with the maintenance road classification adopted by NDOT. For Categories 1 and 2, each includes only one life cycle segment spanning eight and ten years, respectively. Categories 3 and 4 include three and four life cycle segments, respectively, and each segment has three to four years' duration. There was not specific definition for the life cycle for Category 5; therefore, for the purposes of this study, three segments were defined for this category. For each segment in these five categories, linear regression models were developed. In addition to total maintenance cost, this study also developed linear regression models for four maintenance cost components: labor, equipment, materials, and stockpile.

Important influencing factors on annual maintenance costs were considered in this study:

- \cdot Age of road
- The type of maintenance activities in the last year of maintenance life cycle
- · The elevation
- The district
- · Traffic

The results indicate that road age is a significant factor only for some life cycle segments and some maintenance cost components. During the life cycle segment, the annual maintenance cost may be kept the same. The maintenance activities may be scheduled depending on whether they are close to the time when a preventive maintenance or reconstruction is scheduled. Reflected in the maintenance cost profile, the annual maintenance cost may decline with time and then jump up to a high level, with the costs for prevention maintenance or construction included.

Flush seal and chip seal are two preventive maintenances performed by NDOT. The costs incurred in these preventive maintenance activities are significantly higher than other routine and corrective maintenance. Thus, they were singled out in the cost estimation in this study by using indicator variables. Roadways with high elevation tend to be constructed with special safety features, such as guard rails, which would produce high maintenance costs. This observation also was noted from the results of the models. Traffic flow makes road deteriorate and generates the need for maintenance. Its impact on maintenance cost was reflected in the model estimation results. Different districts may adopt different maintenance practice in terms of the materials and equipment used in their districts; this also was observed from the models developed in this study.

It can be seen that the models that were developed – different models for different life cycle segments – uniquely integrate the life cycle concept of pavement. These life cycle segments also

represent the conditions for each roadway. The practices for maintenance activities adopted in NDOT were fully taken into consideration.

The variables used in the models can be easily made available, and provides the basis for the models to be incorporated with NDOT's pavement management and maintenance management systems in order to estimate future maintenance costs. It would be very convenient for NDOT to use the models to estimate the maintenance costs and to submit those cost requirements to the Nevada legislation.

Future study needs

Sampling is a major issue for developing the regression models for some categories of road, such as Categories 1 and 2. With samples covering more areas in Nevada, useful variables – for example, the district – can be used. In this way, a more accurate estimation of annual maintenance cost can be produced.

The definition of life cycle influences the availability of sufficient samples. For example, the life cycle for Category 1 starts after a certain construction and ends at the same type of construction. This life cycle rarely exists in the database. Certain approximations were used to extract the samples for Category 1. This sampling may need to be revisited when the model is adopted by NDOT.

REFERENCES

- Anani, S. B. Revisiting the estimation of highway maintenance marginal cost. Doctoral dissertation, Department of Civil and Environmental Engineering, University of California, Berkeley, 2008.
- 2. Gibby, R., Kitamura, R., Zhao, H. Evaluation of Truck Impacts on Pavement Maintenance Costs. *Transportation Research Record*. 1262, 48-56, 1990.
- Hand, A.J. Development of Life-Cycle Cost Analysis Procedures for Nevada's Flexible Pavements. A Master Thesis, Department of Civil Engineering, University of Nevada, 1995.
- Sebaaly, P.E., Venukanthen, S., Siddharthan, R., Hand, A., and Epps, J. Development of Pavement Network Optimization System. *Research Report No. 1198-1*, Report to Nevada Department of Transportation, Carson City, NV, 2000.

APPENDIX

APPENDIX 1

REVIEW OF NDOT PMS REPORT

Performance Model for 1995

 $PSI = 5 \times e^{-0.0041 \square RI} - 1.38 RD^2 - 0.01 (C+P)^{0.5}$

where:

IRI = international roughness index (in/mile) RD = rut depth (in) C = cracking area (ft²/1000ft²) P = patching area (ft²/1000ft²)

The four repair categories are as follows:

- a. Do Nothing
- b. Maintenance
- c. Overlay
- d. Reconstruction

Distinctions among the categories are based on specific distress indicators and their severity. Points are assigned based on the severity and extent of each distress indicator and friction number. The total summation of the points dictates the general repair category for a section of road. The breakdown of the point assignment system and respective repair categories can be found in the tables below, prepared by NDOT.

Two maintenance techniques were considered: (1) sand seals for flexible pavement, and (2) chip seals for flexible pavement. Three rehabilitation techniques were included in the models:

- (1) Flexible overlay,
- (2) Roadbed modification, and
- (3) Mill and overlay.

Four performance indicators were modeled:

- (1) Surface cracking,
- (2) Permanent deformation or rutting (RD),
- (3) Surface roughness (IRI), and

(4) Present serviceability index (PSD).

In addition, the following four model forms were considered:

- (1) Models for each individual district,
- (2) Models for all districts combined,
- (3) Models including materials properties, and
- (4) Models excluding materials properties.

In total, 16 models *5 treatments = 80 models were developed. The shape of performance function is presented in Figure A.1.1.

		FORMULA	AND DETERMINATION OF FLICTURE PAVENI			
TYPE	Interstate Only T.S.L =2.5		Non-IR NHS, and STP w/ ADT >-750 T.S.L =2.5		All Other Routes T.S.I2.0	
	181	PMS Points	102	This Poles		Hallen Stallen
RIDE.	8-40 41-20 71-90 91-301 106-115	100 210 350	0-80 81-140 104-165 186-678 635-566	100	0 - 59 97 - 130 131 - 150 153 - 170	100 200 300
anna an an Anna A	>115	369	>160	401	171 - 280	400
HEPTH	Arresse Am Donis Out. 35" .36 m 1.80" 1.81 m 1.50" stress 1.55"	(6757 x 10) - 1689 (6757 x 10) - 1689 (762 2 x 10) + 111 1	Avera Ar Cart. 8 a 21" 34 a 1.07 1.01 a 1.97	(473.3 × 1423) - 14425 (1472.2 × 1423) - 14425	Average East Daph C to 45° .44 to 1 17° 1.20 to 1 27°	540 FEIS Folge (673.7 × MD) - 304.1 (997.2 × MD) - 35.1
PATIGLE A & B	A = 1.50 x Event B = 2.80 x Event C = 1.80 x Event D = 1.80 x Event		A = 1.50 x Exterit B = 2.00 x Exterit C = 1.00 x Status D = 1.00 x Status		04411.177 1-154 : Dism 8-1.59 : Parm C-0.59 : France P-9.59 : Edgen	709
New Wheelputh Linear TRANSVERSE BLOCK A	PLIS Policy - Esters & (LC Service Pader)		Hill Palme - Taken a LC Seconday Factor) Taken LC Secondy Factor is determined have		Part Paints - Extend a (LC Security Faster) Where LC Security Faster is determined door	
	Creat Wide	LC Sevents Packer	Out wide	LC Scorrity Factor	Crark Wide	LC Seventy Factor
	2 M. 's M. 2 M. 's M.	8.70 0.8 x (small + 100 1.90	 ≤µP > ₩°; < ₩° > ₩°; < ₩° 	4.30 0.3 - (rank width) - 53 1,59	41AP 5 1AP , 4 30P 274P	AJd Ad + genet widde + .9
PATCHERG	05 x Entered		0.5 x Extent		021+ Exem	
	Katers Ha	Parts Falling	Return No.	745 Nine	Patenka	Phil Frien
BLEEDING	H 15	100	15	140	11	100
RAVELONG	Matury Ka	148 148 24 26	Patiene No. 17 18	F925 Folian 109 118 938	Return No.	HRS Frien COU 234
FRICTION	Frichen Riceber 2 to 20 21 to 30 31 to 36	400 Ports 400 250 109	Friedlan Humber 2 to 20 21 to 30 31 to 38	100 Paints	Frighten Munder 2 to 30 21 to 30 31 to 30 31 to 30	HUI PLLS

Figure 5. NDOT's PMS Points Assignment System.

Repair Category Assigned	PMS Points Total
Minor Maintenance	<50
Maintenance	50 to 399
Overlay	400 to 699
Reconstruction	>699

 Table A.1.2 NDOT's Rehabilitation and Maintenance Assignment System

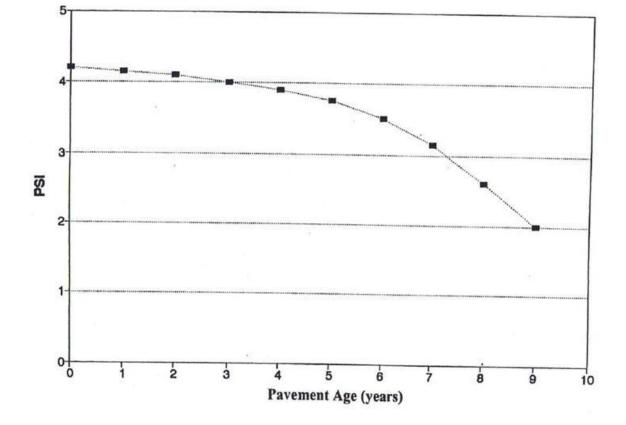


Figure A.1.1. Typical Performance Curve Generated from NDOT's Performance Models.

APPENDIX 2

SURVEY FORM

UNIVERSITY OF NEVADA, LAS VEGAS

Department of Civil and Environmental Engineering 4505 Maryland Parkway, Box 454015 Las Vegas, NV 89154-4015 Phone: 702-895-4940, Fax: 702-895-3936, E-mail: hualiang.teng@unlv.edu

Survey of the practice adopted by State DOTs on estimating the costs of highway infrastructure maintenances (routine, preventive, or corrective maintenances) that are performed by state forces.

University of Nevada, Las Vegas is conducting a research project for Nevada Department of Transportation to estimate the costs of maintenances that are performed by state force. Through this study, the impact of system expansion on maintenance can be taken into account appropriately. The information collected in the survey will help develop the models to estimate the maintenance costs. It will also be used to develop recommendation on the policies related to maintenance in NDOT. It will take approximately 15 - 20 minutes to complete this survey. By returning the survey, you agree the consent to participate in the survey. It would be appreciated if the survey can be returned before November 10, 2010.

SURVEY QUESTIONNARIE

- (5) What are the road maintenance works performed by state force in your state DOT?
- (6) What are the road maintenance works performed by contractors in your state DOT?
- (7) Please list the preventive maintenances in your state DOT:
- (8) Are the timings of these preventive maintenances determined based on field inspections of roadways?
 - \Box Yes \Box No
- (9) Does your state DOT have separated budgets for major highway infrastructures like bridge, lighting, signing, pavement marking, sidewalk, etc.?
 - \Box Yes \Box No

If yes, please list these highway infrastructures?

(10) Which method do you use to budget for new facilities like bridge, lighting, signing, pavement marking, sidewalk lighting, etc.?

 \Box Historic record \Box data from other agencies \Box Others, specify

- (11) Do you observe that maintenance costs for a roadway section increase with years after a reconstruction, a rehabilitation, or a preventive maintenance?
 - \Box Yes \Box No
- (12) Are there equations in your Pavement Management System that relate the costs of roadway maintenance (excluding reconstruction and rehabilitation) to the influencing factors such as ages, traffic loads, pavement conditions, weather, etc.?
 - \Box Yes \Box No
- (13) Are there equations in your Bridge Management Systems (BMS) that relate the costs of bridge maintenance (excluding reconstruction and rehabilitation) to the influencing factors such as ages, traffic loads, etc.?
 - \Box Yes \Box No
- (14) In your routine, corrective and/or preventive maintenance database, is it possible to separate the works for pavements and bridges?
 - \Box Yes \Box No
- (15) Do you estimate maintenance costs in terms of man power, equipment, materials, separately?
 - \Box Yes \Box No
- (16) How does your state DOT deal with the annual fluctuation of maintenance costs (routine, corrective and/or maintenance) because the maintenance activities on a roadway section each year are different?
 - Averaging the maintenance costs over the past three years
 - Estimate the probability of occurrence of maintenance activities
 - Develop advanced statistical regression models
 - Others, please specify ____

Acknowledgement

We appreciate your taking part in this survey and thank you for your valuable time. Please email, mail or fax this completed form to: Dr. Hualiang (Harry) Teng, Department of Civil and Environmental Engineering, Howard R. Hughes College of Engineering, University of Nevada, Las Vegas, 4505 Maryland Parkway, Box 454015, Las Vegas, NV 89154-4015, Telephone: 702-895-4940; Fax: 702-895-3936, E-mail: Hualiang.teng@unlv.edu

APPENDIX 3

RESPONSES TO THE SURVEY

		1. What are the road maintenance works performed by state force in your state DOT?
1	AK	Maintenance and Operation responsibilities include all the activities to keep our State's highways, bridges, airports, buildings and harbors in good condition and safe for the traveling public. These include pavement repair, gravel road maintenance, ditching, snowplowing, snow-hauling, brush cutting, guardrail repair, sign maintenance, street/traffic light repair, drainage structures, fence maintenance, airport light repair, airport safety, security and facility repairs
2	AR	Asphalt patching, base repairs/replacement, joint repair and crack filling, asphalt leveling, surface patching, street sweeper operations, cold milling, seal coats, fog coats, maintaining ditches (clean/reshape), mowing, litter pickup, chemical vegetation control, bridge deck repairs, substructure repairs, painting structural steel, snow and ice removal, maintain traffic signs.
3	CO	CDOT performs all maintenance of our roadways.
4	FL	Attached is our Routine Cost Handbook. This displays all the work activities that we perform on the roads by our Maintenance Crews.
5	IA	The Iowa DOT has about 1,100 maintenance workers organized around 110 maintenance garages throughout the state. This force maintains Iowa's primary road network, which is approximately 9,500 centerline miles. These crews perform many types of maintenance, including: Surface Maintenance, Shoulder Maintenance, Roadside Maintenance, Drainage Maintenance, Traffic Services Maintenance, Snow & Ice Control, Bridge Maintenance, and Emergency Response. See attachment for a list of the major maintenance functions.
6	ID	Pot Hole Repair, Some Base Repair, minor bridge repair, bridge deck sealing, roadside mowing, brush control, vegetation spraying, road kill removal, fence repair, guardrail repair, drainage repair, pavement striping, pavement markings, sign maintenance, winter maintenance & response, brooming & sweeping.
7	IN	Snow/ice removal, chip sealing, crack sealing, mowing and brush cutting, herbicide application, patching, ditching, small culvert cleaning, bridge flushing, sign installations and modernizations, painting of centerlines/edgelines, special marking maintenance, traffic signal maintenance, some pipe replacement, underdrain inspection/cleaning, litter pickup, guard rail and cable rail repair, crash attenuator repair, minor bridge deck repair, some street sweeping
8	KS	Crack and Joint Sealing, Concrete Patching, Bituminous Overlay, Slurry Seal, Bituminous Patching, Shoulder repair, Paint Striping, Sign Maintenance
9	KY	Not an inclusive list but includes snow and ice response, cleaning ditchlines, cleaning/ repairing pipes, smaller sign replacement, emergency response due to nature or wrecks, pothole patching, shoulder repair
10	MD	Routine Maintenance, Winter Maintenance, Preventive Maintenance, Corrective Maintenance, Catastrophic Maintenance

11	MI	See attached Maintenance Activities and Accomplishment Table. Every task on this table is performed by state DOT forces
12	MT	Crack seals; chip seals; machine patching, rut filling; slope repair; blading & shaping gravel shoulders; surface patching-hand; temporary & permanent patching-PCC; crack & joint sealing-PCC; culvert cleaning, repair & replacement; base & surface repair; maintenance of unpaved surfaces; cleaning, shaping and repairing ditches; vegetation management-mechanical & chemical; guardrail repair & replacement; pavement striping & markings; maintenance of delineators, reference markers, traffic signs, traffic signals and luminaries, impact attenuators (crash barriers); repair of escape ramps; inspection of structures; maintenance & repair of structures; maintenance of buildings & sites; maintenance of rest areas; removal of debris & litter; sweeping & flushing; inspection, repair of fences and gates; cattle guard repair.
13	NJ	Mowing and vegetation control Litter pickup and deer carcass removal Stormwater management (Sweeping, inlet inspection and cleaning) – also done by contract Snow and Ice removal (also done by contract) Pothole patching, crack sealing, minor paving work Electrical Repairs (traffic signals and overhead lighting) – relamping also done by contract Fabricate and install highway signs
14	OH	All maintenance on all Interstates, and U.S. or State Routes outside of incorporated areas. This includes pothole patching, snow and ice control, drainage, guardrail, striping, mowing etc.
15	SC	 SCDOT's workforce is not sufficient to perform all of the maintenance needs for our state's transportation system. Some maintenance tasks are performed solely by contract, but many tasks are performed by both state forces and contract forces. Budget fluctuations primarily dictate the amount of work performed by contract. Preservation treatments including chip seal and crack seal Surface and base repairs Cement reclamation Bridge inspection, maintenance, and replacement Drainage maintenance Sidewalk maintenance and repair Vegetation management Debris removal Residential driveway installation and maintenance Sign installation repair and maintenance Sign installation repair and maintenance Hazardous condition responsibilities for natural disasters such as winter storms and hurricane events Guardrail installation, repair, and maintenance Facility and equipment maintenance and repair

16	SD	All
17	VA	See the attached copy of the Activity Code Manual that lists all the activity codes and cost center based activities.
18	WA	Generally, all routine, preventive, and corrective maintenance is carried out by state employees at the WSDOT. This ranges across the maintenance and operation of all assets that comprise the highway system. Larger-scale work such as asphalt overlays, chip seal applications, re-painting bridges, and replacing culverts and traffic signals when they've reached the end of their useful life, are performed by private sector contractors.
19	wv	MOSTLY ROUTINE WITH SOME PREVENTIVE AND CORRECTIVE: Drainage Maintenance– ditching, pipe and drainage structure cleaning and replacement Vegetation Management – mowing, brush cutting, herbicide spraying Pavement and Surface Maintenance – grading, pavement/pothole patching, crack sealing, chip seals
20	WY	WYDOT in-house forces do many activities. I have attached a list of these activities. The list does not contain the striping or electrical features maintenance activities performed by other programs within WYDOT, nor does it contain the full complement of signing activities, since some of those are completed by others as well.

		2. What are the road maintenance works performed by contractors in your
		state DOT? Contractors are used on a project by project basis. We could use a contractor for
1	AK	Contractors are used on a project by project basis. We could use a contractor for each of the tasks listed above.
2	AR	Contract mowing routes, guardrail maintenance, concrete slab jacking.
3	CO	We contract out no maintenance. Our Construction and Engineering forces do contract out some overlays and bridge deck repairs.
4	FL	The contract perform the same activities that our Maintenance Crews. The Operation centers determine if it is more beneficial to perform the work by in-house crews or contracts.
5	IA	Full depth patching, Joint & crack sealing, Joint & crack filling, Thin surface treatments, Bridge painting & maintenance, Guardrail repair.
6	ID	All seal/chip seal coats, all overlays, slurry seals, some roadside mowing, some vegetation spraying, concrete pavement repair, bridge deck repair, guard rail installation, permanent/long life pavement markings, rest area maintenance.
7	IN	Mowing, guardrail and crash attenuator repair, traffic signal maintenance, highway lighting maintenance, small amount of chip sealing, microsurface and other pavement preservation techniques, some pipe replacements and pipe liners, street sweeping
8	KS	Crack and Joint Sealing Concrete Patching Bituminous Overlay Bituminous Patching Highway Striping Sign Replacement
9	KY	Right of way mowing, some snow and ice removal, guardrail repairs, tree and brush trimming, removal, strip patching (larger than potholes), striping, rest area maintenance
10	MD	Routine Maintenance Winter Maintenance Preventive Maintenance Corrective Maintenance Catastrophic Maintenance
11	MI	See attached Maintenance Activities and Accomplishment Table. Every task on this table is contracted out to local agencies in the state. Approximately 2/3 of the lane miles that MDOT is responsible for is maintained under contract with local agencies. The other 1/3 is maintained by MDOT state forces.
12	MT	HMA overlays; crack seals; chip seals; pavement striping & markings; guardrail replacement; crack & joint sealing-PCC; rest areas; slope repair; structure repair.
13	NJ	Maintenance Resurfacing (mill and pave) Plowing and Spreading (also done in-house) Drainage video inspection, cleaning and repair (also in-house) Guiderail Repair Inspection and Cleaning of Manufactured Treatment Devices (MTD's) Sweeping (also in-house) Line Striping

		Bridge Painting
		Thin overlays/microsurfacing
		Relamping (also in-house)
		Bridge repairs
		Concrete joint repair Any road work over \$25,000 per lane mile or any site specific maintenance work
14	OH	over \$50,000 such as bridge repairs or traffic signals.
		State forces are supplemented by contracted work to accomplish as much work as the funding allows. Most of the items listed below are performed by contract forces and state workers. Additional notes are included as an attempt to clarify this information.
		• Reconstruction and rehabilitation treatments (a small amount of cement reclamation is performed by state forces)
		• Preservation treatments (some crack seal is performed by state forces and
		approximately 30 percent of the chip seal is performed with state forces)Base repairs
		• Bridge inspection, maintenance, and replacement (bridges less than 210 feet in length are typically replaced with state forces)
		• Drainage maintenance (primarily performed with state forces)
		• Sidewalk maintenance and repair (primarily performed by contract forces)
		• Vegetation management (approximately 65% of the roadside mowing is performed by contract)
15	SC	• Debris removal (contract forces will likely assist during significant FEMA reimbursable events only)
		 Residential driveway installation (only a small percentage performed by contract forces)
		 Traffic signal installation, repair, and maintenance (new installations and upgrades are primarily performed by contract forces)
		• Sign installation repair and maintenance (interstate Q signs and logo signs are
		installed and maintained by contract forces)Pavement marking installation and maintenance (all thermoplastic long line
		pavement markings are performed by contract)
		• Hazardous condition responsibilities for natural disasters such as winter storms and hurricane events (contract forces will likely assist during significant events
		only)
		• Guardrail installation, repair, and maintenance (primarily performed by contract)
		• Facility and equipment maintenance and repair (some repairs are contracted out)
		• Rest area and welcome center facility and grounds maintenance (performed by contract only)
16	SD	Large chip seal, guardrail replacement, etc. Projects beyond the manpower or equipment capabilities of dot.

17	VA	It is possible that contractors may perform any of the various maintenance activities. Actual activities performed by contractors will vary in different parts of the state dependent upon workload, vendor availability, deadline for completion, etc.
18	WA	See response to question #1.
19	WV	Primarily resurfacing
20	WY	Contractors do similar activities to those done by WYDOT's in-house forces.

3. Please list the preventive maintenances in your state DOT:

1	AK	Pavement preservation activities include chip sealing, crack sealing, fog sealing, high-float, sand sealing, and mirco-surfacing. Other PM activities include gravel surface blading, application of dust palliatives, ditching, brush cutting, and other drainage improvements.
2	AR	Crack sealing, seal coats, fog coats. Pretreating for snow/ice events.
3	CO	Crack Filling, Chip Seals, Overlays
4	FL	Refer to the Routine Maintenance Cost Handbook.
5	IA	Thin surface treatment, Joint & crack sealing/filling.
6	ID	Asphalt Crack Sealing,
7	IN	Chip sealing, crack sealing, ditching, small culvert inspection and cleaning, underdrain inspection and cleaning, bridge deck flushing, traffic signal preventative maintenance (conflict monitor change out, signal bulb/LED bulb change out, cabinet and hardware checklist of items, etc.), herbicide treatments
8	KS	Crack Sealing Patching
9	KY	1 ¹ / ₂ " Asphalt resurfacing, crack sealing, micro surfacing
		Resurfacing Safety Improvements
10	MD	Sign Replacement Minor Bridge Repairs
_		Facility Maintenance Drainage Improvements
11	MI	HMA Crack Treatment, Concrete Crack Treatment, Concrete Joint Resealing With Minor Spall Repair, Overband Crack Fill- Pretreatment, Chip Seals, Micro- surfacing, Ultra-Thin HMA Overlay-Low & Medium Volume (<1" thick), Shoulder Fog Seal, Paver Placed Surface Seal, Non-Structural HMA Overlay(1.5")*, Surface Milling with Non-Structural, HMA Overlay (1.5")*, HMA Shoulder Ribbons, Full Depth Concrete Pavement Repairs, Diamond Grinding, Dowel Bar Retrofit, Concrete Pavement Restoration**, Underdrain Outlet Clean Out and Repair
12	MT	Crack seals; chip seals; HMA overlays (0.15'); mill & HMA fill (0.20'), crack & joint seal-PCC; cold in-place recycling; machine patching; rut filling; culvert cleaning & repair.
13	NJ	Thin overlays Crack sealing Joint repair/replacement Bridge Painting Slab Jacking Diamond Grinding (PCC Pavement)
14	OH	Crack sealing, bridge cleaning of decks and substructures, cleaning drainage structures, and chip sealing
15	SC	 Types of preventive maintenance surface treatments are listed in order of precedence: 1) Chip seal 2) Ultra-thin HMA overlays 3) Microsurfacing

		4) Full-depth patching
		5) Crack seal
		6) Diamond grinding (rigid pavement only)
16	SD	
17	VA	Refer to the Activity Code Manual
18	WA	There are preventive maintenance (PM) aspects of most all activities that comprise highway maintenance. Major PM programs are currently implemented by the WSDOT maintenance program for the following highway assets: Movable and Floating Bridges Keller Ferry Operation Signals Intelligent Transportation Systems Highway Lighting Urban Tunnel Maintenance and Operations Cable Guardrail We are currently developing more defined PM programs for bridges, pavements, and drainage features.
19	WV	Crack sealing, patching, chip sealing
20	WY	If you are talking about pavements or bridges, most of the repairs that are done can be classified as both preventive and reactive maintenance, and in reality, many of these treatments are used in both strategies. Due to funding challenges, most of the preventive maintenance is done using contractors, as we have been more successful in funding contracted operations over those done by in-house forces.

4. Are the timings of these preventive maintenances determined based on field inspections of roadways?

1	AK	yes	
2	AR	yes	
3	СО	no	
3	CO	answer	To some degree, also based on Remaining Service Life.
4	FL	VAS	We use our Maintenance Rating Program (MRP) to determine where
4	TL	yes	work is needed on our roadways.
5	IA	yes	
6	ID	no	
7	IN	yes	
8	KS	yes	
9	KY	yes	
10	MD	yes	
11	MI	no	Not necessarily, some preventative maintenance treatments are performed on a predetermined schedule.
12	MT	yes	
13	NJ	yes	
14	OH	yes	
15	SC	yes	
16	SD	yes	
17	VA	yes	
18	WA	yes	
19	WV	yes	
20	WY	yes	Yes, field inspections carry a large amount of weight when scheduling these treatments. We have preferred time frames to accomplish these tasks, but we will do them both earlier and later based on testing and field observations

5. Does your state DOT have separated budgets for major highway infrastructures like bridge, lighting, signing, pavement marking, sidewalk, etc.?

		If yes, please list these highway infrastructures?
AK	no	
AR	yes	Heavy bridge structures, pavement markings, cold milling crew/operations.
CO	no	
		Maintenance two major budget entities:
EI	Voc	Bridge Rehabilitation/Repair Program (BRRP) for major bridge work, and
FL	yes	Routine Maintenance Budget Program. A summary spreadsheet summarizes routine
		maintenance activity needs and combines them with the fixed
		obligations resulting in a
		summary of statewide Maintenance budget needs.
IA	yes	Bridge yes, the rest are combined for budgeting purposes.
ID	yes	We have separate budget line items for these items, but we allow the District managers to move funds from each line item to others to cover the current need.
		We have budgets for contracted work broken out by asset classes
IN	yes	(expansion projects, safety projects, bridges, preservation projects and maintenance type projects. Traffic items such as lighting or signing might be lumped in an expansion project or stand alone if it is pure maintenance/modernization.
KS	no	
KY	yes	Separate budget for bridges, panel signing, guardrail at new locations, preventive maintenance
MD		Not strictly. We have separate budget categories for much of this work, but the funding can be moved rather fluidly from category to category to account for unforeseen needs that always occur throughout the year. Pavement Sidewalk Guardrail End-Treatments Bridge Noise Walls Park & Ride Lots Safety Hardware Facilities Intersections Drainage Improvements Crash Prevention Truck Weigh Stations
MI	ves	
1711	<i>J</i> C 5	Capital Maintenance projects are funded with Transportation Trust
NJ	yes	Fund dollars and include items that extend infrastructure life by 5 years or more.
	CO FL IA ID IN KS KY MD	ARyesCOnoCOnoFLyesIAyesIDyesIDyesINyesINyesMDYesMIyesMIyes

			All electrical work is TTF – Electrical Program line item
			All Sign work is TTF funded – Sign Program line item
			All Maint. Resurfacing is TTF funded – Resurfacing Program line item
			Preventive Maint. Is TTF or Federally funded.
			Guiderail Repair is TTF funded – Betterments Safety program line item
			Line Striping is Federally funded – Long-Life Lines program line item.
			Operating maintenance budget
			Capital improvement budget
14	OH	yes	Bridges
		-	Pavements
			Maintenance contracting budget
			There are separate budgets for the pavement improvement and
1	0.0		preservation fund, contracted bridge replacements, and separate
15	SC	no	budgets for cable rail and guard rail repair. Most other maintenance
			needs are prioritized and paid from the same budget.
16	SD	yes	
	~	<u> </u>	• Pavement,
			• bridges,
			• guardrail,
		yes	• signs,
17	VA		• markings,
17	٧A		• signals,
			• ITS assets,
			• tunnels,
			,
			• other assets and operations
			Our state legislature provides a budget for the entire highway
			maintenance program then we divide the program budget amongst 37
	WA		activities that comprise the program. Detailed budget plans are
10			established for each of these 37 activities for the purpose of budget
18	WA	yes	tracking and accountability. A list (in priority order) of these activities
			can be viewed via the enclosed web address.
			http://www.wsdot.wa.gov/NR/rdonlyres/5558D96F-BE37-4503-B020-
			0C1152CB13B0/0/0911BalancedLOSPriorities.pdf
19	WV	yes	Bridge Departments – bridge repair, maintenance, and replacement
-	••••	J	Sign Shop – lighting, signing, and pavement markings
			See the attached sheets for the categories. Again, this list does not
			contain some of the things
20	WY	Not	that WYDOT maintains through other, specialized programs.
20	** 1	strictly	work, but the funding can be moved rather fluidly from category to
			category to account
			for unforeseen needs that always occur throughout the year.
6. Which method do you use to budget for new facilities like bridge, lighting, signing,			

pavement marking, sidewalk lighting, etc.?

				Note
--	--	--	--	------

1	AK	Historic record	
2	AR	Historic record	
3	CO	historic record	
4	FL	Others	In current year budget cycle, we have a line item for additional lane miles that have not been completed by construction. This is to make sure we have the funds available to perform routine maintenance of those roadways. Once the project is complete, we inventory the items on the road and they are then captured by our regular budget cycle for future years.
5	IA	others	The Iowa DOT has a 5-year transportation plan that sets the priorities for new facilities.
6	ID	Others	New facilities are all brought into the our network through contract construction, not maintenance. Therefore, budgeting for these items is based on historical data of construction contracts.
7	IN	Others	We list all proposed projects in a class of projects and then rank the need utilizing a team of agency wide staff to prioritize with various factors such as asset rating, cost, potential benefits, etc.
8	KS	historic record	
9	KY	historic record	
10	MD	Historic record, others	previous expenditures additional quantities previous condition
11	MI	Historic record	
12	MT	data from other agencies	
13	NJ	Others	Management Systems Data (Pavement Management System, Drainage management system, Bridge Management System, etc.)
14	OH	historic record	
15	SC	others	Project funding is distributed based on need and projects are prioritized by formula. Budgets for maintenance are typically distributed to different divisions by formula. Needs are prioritized and addressed as funding permits.
16	SD	Others	Inspections
17	VA	others	Condition based or service based, targeted needs assessment
18	WA	historic record	
19	WV	others	Bridge – 6 year plan, STIP Sign Shop – historical data
20	WY	both	We use history if we already have similar facilities. We will ask other agencies who have similar. Infrastructure if we have no experience with it. Many times, this additional work must be absorbed into the existing funding levels

1	AK	yes	
2	AR	yes	
3	CO	yes	
4	FL	no	
5	IA	yes	
6	ID	no	At the present time we do not have an operational Maintenance Management System (MMS) to track maintenance costs. We are in the process of implementing a new MMS that should be fully operational and on-line by June 30, 2011. Sometime after that we will be able to answer this question.
7	IN	no	A pavement preservation program can help avoid significant out year expenditures if followed soon after a reconstruction/major rehab
8	KS	yes	
9	KY	yes	
10	MD	no	
11	MI	yes	
12	MT	yes	
13	NJ	no	
14	OH	yes	
15	SC	yes	
16	SD	yes	
17	VA	yes	
18	WA	yes	We don't have specific data to support this but this is our general observation and opinion.
19	WV	yes	
20	WY	yes	We also notice that the maintenance costs go down immediately before reconstruction or rehabilitation since we don't want to spend significant amounts of our maintenance funding only to see it disappear as the reconstruction/rehabilitation takes place.

7. Do you observe that maintenance costs for a roadway section increase with years after a reconstruction, a rehabilitation, or a preventive maintenance?

8. Are there equations in your Pavement Management System that relate the costs of roadway maintenance (excluding reconstruction and rehabilitation) to the influencing factors such as ages, traffic loads, pavement conditions, weather, etc.?

			Note
1	AK	yes	
2	AR	no	
3	СО	no	Do not know. Pavement management is run by the Materials and
5		answer	Geotechnical section
4	FL	no	
5	IA	no	
6	ID	no	
7	IN	no	This should be "sort of". We do have a level-of-service module in our maintenance management system that we have yet to use. Our pavement management system currently does not capture in-house maintenance activities.
8	KS	no	
9	KY	no answer	
10	MD	yes	
11	MI	no	
12	MT	yes	
13	NJ	no	
14	OH	no	
15	SC	no	
16	SD	yes	
17	VA	yes	
18	WA	no	Not at this time but we are working towards better integration of roadway maintenance activities, costs, and benefits into our Pavement Management System.
19	WV	yes	
20	WY	no	

9. Are there equations in your Bridge Management Systems (BMS) that relate the costs of bridge maintenance (excluding reconstruction and rehabilitation) to the influencing factors such as ages, traffic loads, etc.?

			Note
1	AK	yes	
2	AR	no	
3	CO	no answer	Do not know. Bridge Management is run by Staff Bridge.
4	FL	no	
5	IA	no	
6	ID	no	
			Not currently. We use Deighton's dTIMs for both pavement and
7	IN	no	bridge, which is being modified to better include these items.
8	KS	no	
9	KY	no	
10	MD	yes	
11	MI	no	
12	MT	yes	
13	NJ	no	
14	OH	no	
15	SC	yes	
16	SD	yes	
17	VA	yes	
18	WA	no	Not at this time but we are working towards better integration of roadway maintenance activities, costs, and benefits into our Bridge Management System.
19	WV	yes	
20	WY	no	

			Note
1	AK	yes	
2	AR	yes	
3	CO	yes	
4	FL	yes	
5	IA	yes	
6	ID	no	Not at this time, but we will have this functionality when the new MMS is implemented.
7	IN	yes	
8	KS	yes	
9	KY	yes	
10	MD	yes	
11	MI	yes	
12	MT	yes	
13	NJ	yes	
14	OH	yes	
15	SC	yes	
16	SD	yes	
17	VA	yes	
		no	
18	WA	answer	
19	WV	yes	
20	WY	yes	

10. In your routine, corrective and/or preventive maintenance database, is it possible to separate the works for pavements and bridges?

11. Do you estimate maintenance costs in terms of man power, equipment, materials, separately?

			11.1
1	AK	yes	
2	AR	yes	
3	CO	no	
4	FL	yes	
5	IA	yes	
			Not at this time. Due to our budget process, we only estimate and budget for material or contract expenditures as man power and equipment costs are fixed within the budget. As we begin utilizing the new MMS, then we will estimate and budget for maintenance
6	ID	no	projects via all three costs that you have listed.
7	IN	yes	
8	KS	yes	
9	KY	yes	
10	MD	yes	
11	MI	no	
12	MT	no	
13	NJ	yes	
14	OH	yes	
15	SC	yes	
16	SD	yes	
17	VA	yes	
18	WA	no answer	
19	WV	yes	
20	WY	no	We currently add these together to come up with a single estimating factor. We are looking at splitting these for other systematic concerns.

12. How does your state DOT deal with the annual fluctuation of maintenance costs (routine, corrective and/or maintenance) because the maintenance activities on a roadway section each year are different?

			12.1
1	AK	Others	We target our budget where the need is. We use our annual highway condition inspection survey, Pavement Management System, Airport Pavement Management System, Bridge Management System, and other field reports to target our maintenance activities. We also prepare an annual list of deferred maintenance needs for each mode (highways, aviation, ports and harbors, facilities, and Marine Highway) and target deferred maintenance capital funds to where the need is.
2	AR	Averaging the maintenance costs over the past three years	
3	СО	no answer	We developed a Performance based budgeting system that uses surveys of roadway condition, amount spent on that area, accomplishments in that area, and determines a dollar amount required to obtain a specified level of service in that area for the following year.
4	FL	Others	The budget for future years are based on historical costs per maintenance activity.
5	IA	others	Budget-driven and priority-based
6	ID	Others	Out maintenance budgets have remained stagnant for several years. As a result, we prioritize our maintenance budget to address winter maintenance needs as priority and perform summer maintenance as funds become available. Since the Districts are responsible for their roads, it then becomes their responsibility to address maintenance needs either via regular state performed maintenance or contract maintenance, whichever they have.
7	IN	Others	Develop frequency rates so that the entire inventory of a feature gets addressed in a pre-determined timeframe/cycle
8	KS	Averaging the maintenance costs over the past three years	
9	KY	Others	We receive a baseline budget for most maintenance activities that is one large budget. We have the flexibility to spend that budget on the roads and activities necessary, as far as the money will allow. The baseline budget is based on past budgets and we

			, • 1 1 733
			request increases as we need. Those requests are
			reviewed by the Governor's Office and the General
			Assembly as part of the total budget bill.
10	MD	 Averaging the maintenance costs over the past three years X Estimate the probability of occurrence of maintenance activities X 	Annual Condition Assessment, Maintain core activities during budget shortfalls, seek capital funding
11	MI	Averaging the maintenance costs over the past five years	
12	MT	Estimate the probability of occurrence of maintenance activities	
13	NJ	Averaging the maintenance costs over the past three years	
14	ОН	Others	Our maintenance database (Transportation Management System) tracks material, equipment, and labor costs for every maintenance job. Those standard costs are calculated and updated each year to deal with annual fluctuations.
15	SC	others	Unfortunately, SCDOT's Maintenance Division is not based on the amount of need. The funding that is dedicated to maintenance is distributed to the divisions based on need and this funding is used to address as much of the prioritized needs as possible.
16	SD	Estimate the probability of occurrence of maintenance activities	
17	VA	others	The needs assessment generates recommended units of work for each asset and each major activity type. Each asset/activity has an associated cost, which is updated each year to reflect actual costs and projected inflation over the two years. The total need for the program across each type of asset or service is then calculated by multiplying the unit cost by the number of units required of each activity type to meet performance or service targets, and then adding the results across all assets, roadway systems, and districts.
18	WA	no answer	
19	WV	others	WVDOT has developed a core maintenance program that addresses routine maintenance such as drainage maintenance, vegetation management, and pavement

			maintenance for state forces. Because maintenance costs and material prices have increased, contract resurfacing gets less and less road miles each year with the same funding. This has caused a shift to more preventive maintenance by state forces performing crack sealing, patching, chip seals, and surface treatments to extend the life of pavements to sustain our road system.
20	WY	all	 Averaging the maintenance costs over the past three years. WYDOT uses this model, but we use a five year weighted average. Estimate the probability of occurrence of maintenance activities – WYDOT does not use this. Develop advanced statistical regression models – We have not done this. Others, please specify _We do have a methodology that allows us to compensate for anticipated activities that appear they will exceed our averages significantly.

APPENDIX 4

ROAD INVENTORY DATA IN TERMS OF MAINTENANCE PRIORITIZATION CATEGORY

		Sect	ion 1	Sect	ion 2
Prioritizati	Road	From	То	From	То
1	U\$395	0.56	9.61		
2	SR520	0.00	1.23		
	SR529	0.56	6.22		
	SR530	0.00	1.46		
	SR531	0.00	1.65		
	US050	0.00	7.63	12.27	16.40
	US395	0.00	0.56		
2	FRCC01	0.00	1.91		
	FRCC04	0.19	0.69		
	FRCC04	0.00	0.13		
	FRCC06	0.00	0.80		
	SR028	0.00	3.95		
	SR511	0.00	0.81		
	SR512	0.00	2.28		
	SR513	0.00	2.38		
	SR516	0.67	2.45		
	SR518	0.00	1.02		
	SR525	1.77	3.09		
4	SR513	2.38	4.66		
jan.	SR516	0.00	0.67	2	
5A					
5B					
5C	SR705	2.94	4.02		

Road Inventory Data for Carson City County

		Secti	ion 1	Section 2		
Prioritizati	Road	From	То	From	То	
1	IR080	0.00	27.71			
	U\$050	11.00	24.74			
2		11.23	21.71			
	US050A	0.00	9.10			
	US095	0.00	28.06			
3	SR117	0.00	6.91			
	SR715	0.00	2.14	e la		
	SR720	0.00	3.02			
	SR723	0.00	0.36			
	U\$050	0.00	11.23	21.71	106.8	
	US095	28.06	59.04			
4	SR115	1.01	4.82			
	SR116	0.00	10.49			
	SR119	0.00	4.14			
	SR718	0.00	2.90			
	SR723	0.36	2.01			
	SR726	0.00	1.87			
5A	SR118	0.00	3.48			
5B	FRCH01	0.12	0.28			
	FRCH02	0.00	8.84			
	SR115	0.00	1.01			
	SR361	0.00	15.69			
5C	FRCH01	0.00	0.12			
э с	FRCH01	0.00	2.57			
	FRCH04	0.00	0.61			
	FRCH04	0.00	4.20			
	FRCH07	0.00	4.20			
	PCH15	0.00	0.16			
	PCH16	0.00	2.89			
	PCH16B	0.40	0.00			
	PCH106	0.40	0.00			
	PCH17	0.00	0.83			
	SR120	0.00	6.26			
	SR120	0.00	26.95			
	SR121 SR722	0.00				
	SR722 SR839	0.00	16.62 13.92			

Road Inventory Data for Churchill County

Road Inventory Data for Clark County

		Sect	Se	ction 2	
Prioritizati	Road	From	То	From	То
1					
2	SR088	0.00	7.87		
	US050	0.00	14.55		
	U\$395	0.00	33.96		
3	SR028	0.00	1.23		
	SR207	0.00	11.09		
	SR208	0.00	8.80		
	SR756	0.00	3.97		
	SR759	0.00	1.00		
4	SR206	0.00	15.42		
	SR757	0.00	3.19	-	
	SR760	0.00	0.60		
5A					
5B					
5C	PDO01	0.00	0.31		
	PDO03	0.00	0.38		
	PDO03B	0.00	0.09		
	PDO03C	0.00	0.16		

Road Inventory Data for Douglas County

		Section			ection 2		Section 3
	il a mi			Free	To	Ferm	T
1	1 19080	0.00	132.78				
7	9775	27.34	21.75				
	51227	E.	7.113			-	
	SR535	25.75	27.24				
	US093	74.05	141.82				
		1	10000				
э	FREL17		2.86				
	36273	74.6	71.76				
	SR2.25	28.79	54.48				
	SR2.27	7.03	18.34				
	ST0 46		118				
	US093	0.00	74.06				
	000000						
	FRELDI		878				
	FRELDS		3.68				
	FRELOS	-	3.05				
	FRE121		818				
	FRELZZ		E1.				
	FRELIE		8.75				
	FRELAD		125				
	FREL43		131				
	FRELAG		E31				
	FRELAS	0.00	DDG				
	FRELSA						
	FRELSS	21	36.77 E16				
	FRELSS		E16				
	FREL7D		E-44				
		1.44	442				
	SF2 21	54.48			.98 127	=1	
	SF2 25		77.05		-50 127	-	
			33.67				
	SR228	6.86 24.92	33.67				
	US093A	24.32	35.31				
	-		8.93				
	FRE133				_	_	
	56273		XB			-	
	SR2.25 SR2.33	77.05	112.98				
	SF233	0.00	34.23		-	-	-
							-
	US093A	0.00	24.92			-	_
					-	-	
	FRELDA	1.2	183				
	FREL13		E37				
	FREL19		E3B				
	FRELZD		E23				
	FREIZ3		1.38			-	
	SR2.26	0.00	20.00			-	
	SR2.29	0.00	50.35				
	57232	202	17.13		_	_	
	FREL02		E44		-		
	FRELDS	6.00	228			_	
	FRELDE		3.32				
	FRELD7	•=	828			_	
	FRELDS		R.Hi				
	FREL1D	8.00	E 84				
	FRELZ3	1.30	3.25				
	FREL24		832				
	FREL26	8.00	8.67				
	FREL27	0.00	1.72				
	FREL28	0.00	11.50				
	FREL3D	6.00	8.83				
	FREL31	6.00	1.71				
	FREL32	8. 	1.89				
	FREL35		1.60				
	FREL36	6.00	818				
	FREL37		8.63				
	FRELSS		814				
	FREL41		827				
	FREL42		822				
	FTEL46		1.85				
	FREL45	1.05	131				
	FRELSS		1.86				
	FRELS7		B-11				
	FREISD		125				
	FREI 61		123				
	PEL74		1.31				
	PEL 748		1.52				
	PELA						
	SR2.26	20.00	39.02				
	SR2 30	0.00	13.06				
	SR231	0.00	11.70				
			2.57				
	37232						

Road Inventory Data for Elko County

		Sect	ion 1	Section 2		
Prioritizati	Road	From	То	From	То	
1						
2	US006	18.87	57.79			
	US095	0.00	45.42	85.40	99.06	
3						
4						
5A	US006	0.00	18.80			
5B	SR264	0.00	33.67			
	SR266	0.00	40.34			
	SR773	25.46	35.96			
	US006	18.80	18.87			
5C	FRESO1	0.00	0.44			
	FRESO2	0.00	0.64			
	SR265	0.00	20.50			
	SR267	0.00	9.36			
	SR774	0.00	7.46			

Road Inventory Data for Esmeralda County

		Sect	ion 1	Se	Section 2		Section 3	
Prioritizati	Road	From	То	From	То	From	То	
1	IR080	0.00	25.70					
2				_				
3	SR766	0.00	6.32					
	US050	0.00						
				1				
4	SR278	0.00	20.23					
	SR306	0.00	20.62	d.				
5A	SR278	62.42	82.66					
5B	SR278	20.23	62.42					
5C	FREU01	0.00	1.69					
	FREU02	0.00	5.49					
	FREU03	0.00	0.10					
	FREU04	0.00	1.39					
	FREU05	0.00	0.38					
	FREU06	0.00	4.25					
	FREU08	0.00	0.51					
	FREU09	0.00	1.04					
	FREU10	0.00	0.15					
	SR780	0.00	2.27					

Road Inventory Data for Eureka County

		Sect	ion 1	×	ction 2
Prioritizati	Road	From	То	From	То
1	IR080	0.00	61.38		
2	SR294	4.03	8.97		
	SR787	0.00	0.50		
	US095	0.00	33.00	0	
2	SR289	14.28	15.92		
	SR294	0.00	4.03		
	SR794	14.62			
	US095	33.00	75.40		
		00.00			
4	FRHU03	0.00	1.38		
	FRHU05	0.00	0.28		
	FRHU10	1.07	1.19		
	FRHU12	2.02	2.20		
	FRHU20	0.00	3.38		
	SR789	0.00	16.25		
	SR795	0.00	1.25		
	SR796	0.00	1.36		
5A	FRHU11	0.00	2.21		
-	SR140	0.00			
	SR290	0.00			
	SR293	0.00	3.40		
-0		0.16	0.37		
58	FRHU04	0.16	0.27		
	FRHU08	0.00	0.51		
	FRHU09	2.05	0.70 9.95		
	FRHU15 SR140	3.06 65.58			
	SR293	3.40	23.99		
	511233	5.40	23.35		
5C	FRHU01	0.00	0.19		
	FRHU04	0.00	0.16		
	FRHU07	0.00	0.87		
	FRHU08	0.51	0.94		
	FRHU09	0.00	0.69		
	FRHU10	0.00	1.07		
	FRHU12	0.00	2.02		
	FRHU13	0.00	0.41		
	FRHU14	0.00	0.37		
	FRHU17	0.00	0.32		
	SR292	65.58	68.52		

Road Inventory Data for Humboldt County

		Sect	ion 1	Se	ection 2
Prioritizati Road		From	То	From	То
1	IR080	0.00	26.97		
2					
3	SR304	4.42	8.21	8	
	SR305	115.73	118.52		
	U\$050	0.00	57.00		
4	SR305	93.00	115.73		
	SR376	0.00	18.07		
5A	SR305	30.80	93.00		
	SR306	2.31	12.34		
5B	FRLA01	0.00	8.25		
	SR806	0.00	5.90		
5C	FH030	0.00	9.80		
	FRLA02	0.00	19.14		
	FRLA05	0.00	1.96		
	SR722	0.00	41.52		

Road Inventory Data for Lander County

		Sect	ion 1	Sect	ion 2
Prioritizati	Road	From	То	From	То
1					
2					
3	SR318	0.00	49.42		
	US093	0.00	50.61	92.49	95.53
4	SR319	50.00	70.91		
	SR321	0.00	5.11		
	SR322	0.00	0.78		
	US093	50.61	92.49	95.53	172.87
5A	SR317	56.78	58.59		
5B	SR317	37.10	56.78		
	SR322	0.78	18.58		
	SR375	0.00	49.05		
	SR816	0.00	0.61		
5C	PLN12	0.00	1.72		
	PLN12B	0.00	0.84		
	PLN13	0.00	0.39		
	PLN15	0.00	1.69		
	PLN17	0.00	2.00		
	SR320	0.00	10.67		

Road Inventory Data for Lincoln County

<u></u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		on 1	Section 2	
Prioritizati		From	То	From	То
1	1R080	0.00	15.91		
2	SR341	0.00	4.90		
100	SR822	0.00	0.15		
	U\$050	0.00			
	US050A	0.00	7.82		
	US095	0.00	2.82		
	03035	0.00	2.02		
3	SR208	2.45	8.91	28.09	29.1
	SR339	0.00	11.52		
	SR340	0.00	1.08		
	SR342	0.00	0.84		
	U\$050	14.04	35.40		
	US095A	0.00	60.59		
		A THE HER			
4	FRLY01	0.00	0.04		
	FRLY04	0.00	0.35		
	SR208	0.00	2.45	8.91	28.0
	SR338	0.00	30.90		
	SR427	0.00	1.66		
	SR823	0.00	7.11		
	SR824	0.00	5.57		
	SR827	0.00	1.50		
	SR828	0.00	7.74		
Louis -					
5A	SR827	1.50	5.8		
	SR829	0.00	3.17		
58	SR823	7.44	7.61		
D		7.11	7.61		
	SR825	0.00	0.42		
5C	FRLY01	0.00	2.51		
	FRLY03	0.00	1.50		
	PLY12	0.00	0.31		
	PLY13	0.00	1.33		
	PLY16	0.00	1.02		
	PLY16B	0.00	0.38		
	PLY16C	0.00	0.35		
	PLY16D	0.00	0.18		
	PLY16E	0.00	0.04		
	PLY19	0.00	2.20		
	PLY19B	0.00	0.12		
	PLY19C	0.00	0.06		
	PLY19D	0.54	0.00		
	PLY19E	0.00	0.18		

Road Inventory Data for Lyon County

		Secti	ion 1
Prioritizati	Road	From	То
1			
2	SR362	0.00	1.30
	US095	0.00	92.14
3	SR360	0.00	23.25
	US006	0.00	11.96
4	SR359	32.89	33.35
	US095A	0.00	10.68
5A	US006	11.96	15.20
5B	SR359	0.00	32.89
	SR361	0.00	22.20
5C	PMI33	0.00	0.58
	SR839	74.82	78.97

Road Inventory Data for Mineral County

		Sect	ion 1	Sect	ion 2
Prioritizati	Road	From	То	From	То
1	U\$095	0.00	6.86		
2	SR372	0.00	7.77		
	US006	0.00	1.80		
	US095	6.86	107.22		
3	SR160	0.00	9.72	5	
	SR318	0.00	38.79		
	US006	1.80	2.00	12	
4	FRNY33	0.00	0.36		
	SR160	9.72	37.03		
	SR373	0.00	16.30		
	SR374	8.20	8.84		
	SR376	0.00	81.75		
	US006	2.00	14.01		
5A	SR374	0.00	8.20		
	US006	14.01	51.21	117.96	132.03
5B	SR361	0.00	24.96		
	SR375	0.00	49.36		
	US006	51.21	117.96		
5C	FRNY01	0.00	0.71		
	SR082	0.00	27.00		
	SR267	0.00	12.07		
	SR377	0.00	6.60		
	SR379	0.00	19.53		
	SR844	0.00	12.32		

Road Inventory Data for Nye County

	5280 205	Secti	
Prioritizati		From	To
1	IR080	0.00	75.09
2			
		_	
3		_	
4	FRPE14	5.10	5.39
	SR856	0.00	1.40
5A	SR398	0.00	4.76
ЭА	SR401	0.00	2.35
	38401	0.00	2.50
5B	FRPE21	0.00	0.19
50	SR399	0.00	18.18
	SR858	0.00	0.55
	J. L. D.		
5C	FRPE01	0.00	28.17
	FRPE02	0.00	1.05
	FRPE04	0.00	0.34
	FRPE05	0.00	0.18
	FRPE06	0.00	0.67
	FRPE07	0.00	4.21
	FRPE09	0.00	1.27
	FRPE11	0.00	4.08
	FRPE12	0.00	0.11
	FRPE13	0.00	3.90
	FRPE14	0.00	5.67
	FRPE15	0.00	7.49
	FRPE16	0.00	0.14
	FRPE17	0.00	0.08
	FRPE21	0.19	1.47
	FRPE22	0.00	1.75
	FRPE23	0.00	1.62
	FRPE24	0.00	1.79
	FRPE25	0.00	0.25
	PPE32	0.74	0.00
	PPE33	0.00	0.17
	PPE34	0.00	0.13
	SR396	0.00	7.70
	SR397	0.00	11.84
	SR400	0.00	16.58
	SR854	0.00	4.12
	SR860	0.00	1.89

Road Inventory Data for Pershing County

		Section 1		
Prioritizati	Road	From	То	
1				
2				
3	SR341	8.02	15.74	
	SR342	0.00	2.94	
4	SR341	4.90	8.02	
5A				
5B				
5C				

Road Inventory Data for Storey County

Road Inventory Data for Washoe County

in dikati	lincal .	Section Frame T		Suctions 2 Annuas — The	
1	1R080	0.00	45.08		-
	IR SBD	5.09	30.19	89	40.00
	United States				
2		1.00	8.16		
	FINAL	E.B.	816		
	FRWA25	0.15	0.00		
	SHERE	71.11 5.72	18.99		
	58340.	13.65	77.84		
	58425	E.100	E37		
	50420	17.00	79.65		
	58445	1.35 2.34	115		
	-	L	1.00		
	58642	15.88	15.04		
	SR650	2.78	12.41	-	
	SHEEL	1.94	12.41		
	58663	LIN	2.45		
	58667	21.45	27.BL		
	-	8.92	A .B		
	U\$395	6.98	29.57		
			-		
э	FRANKE	E.00	1.37		
	FRENKRAL	LIP	1.37		
	FRANKLE	LO	1.37		
	FRANK27	LB	E32		
	FRANKER	B. 100	B-19		
	FRANK	LIP	817		
		LIP	5.77		
	5890	15.74	13.85		
	58425	1.67	6.29		
	58431	0.00	24.41		
	58045	11.37	72.55		
	SR447	0.00	15.80		
	58642	LB	18.15		
	5808	F.BP	8.57		
- 82	FRANKREL	E.00	646		
3	FRANKES	L	1.67		
	FERRIC		£76		
	FRWALD	0.00	1.10		
	FIRMUZ	LB	1.167 1.30		
	FINANZI	B.88	8.85		
	FINANCES	3.15	5.40	-	
	FINANS SINC	E.11	17		
	SR429	0.03	7,82		
	SR445	20.05	40.05		
	SR446	0.00	13.16		
	SR447 SR877	15.80	74.65 4.30		
	ane//	0.00	4.50		
i (E.00	6.48		
	FINANS	E.M	648		
	FINANCI	E.BP	11-372		
	FRANCIS		1.00		
	FIRMAN 2	E.00	1.27		
R - 3	FHEE5		1.58		
	FINANCIA FINANCIA	LIP	1.41		
	FRANCIS	L	LH		
	FRANKER	1.00	8.85		
	FINING21	E IO	148		
	FRANK22	5.41	2.05		
	FINIMEZ	LOP	LIS		
	FRANK	1.00	B-11		
		E.00	8.15		
		E.BP	1.15		
	PHWOME	L	LIS		
	PHYSIC	B. 80	E.04		
		E.M.	ESI.		
	PRIVINE	LB	8.16		
	PWARE	0.00	0.38		
	58655	E.00	1.14		
	SHOW		LER		

		Sect	ion 1	
Prioritizati	Road	From	То	
1				
2				
3	SR318	0.00	22.57	
	US006	13.92	101.88	
	US050	0.00	68.43	
	US093	53.45	116.71	
4	SR490	0.00	8.93	
	US093	0.00	26.71	
5A	SR487	2.04	11.03	
	SR488	0.00	5.49	
	US006	0.00	13.92	
	US093A	0.00	5.69	
5B	SR487	0.00	2.04	
5C	PWP01	0.00	2.47	
	PWP01B	0.00	0.67	
	SR486	0.00	33.30	
	SR892	0.00	35.92	
	SR893	0.00	39.75	
	SR894	0.00	16.62	
	SR895	0.00	1.48	

Road Inventory Data for White Pine County

Nevada Department of Transportation Rudy Malfabon, P.E. Director Ken Chambers, Research Division Chief (775) 888-7220 kchambers@dot.nv.gov 1263 South Stewart Street Carson City, Nevada 89712